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The behavior of stock returns in the Asia-Pacific mining industry following the Iraq 
war 

 
Viviana Fernandez1 

 
Abstract 

 
 In this article, we pursue to determine which mining firms have seen their stock 
returns become more sensitive to fluctuations in energy prices, over a time period 
predominated by the political turmoil caused by 9/11 and the subsequent invasion of Iraq. 
By resorting to wavelets and spatial statistics, we characterize the behavior of volatility and 
the degree of co-movement of the stock returns of ten leading mining firms operating in the 
Asia-Pacific region: Alcan Inc., Antofagasta, Barrick Gold Corp., BHP Billiton, 
International Nickel Ind., Peabody Energy, Phelps Dodge Corp, Rio Tinto plc., Teck 
Cominco Ltd., and Yanzhou Coal Mining Co.  
 

Our findings can be summarized as follows. Firstly, most mining company returns 
became especially volatile around the time of the declaration of war on terror and the 
subsequent invasion of Iraq, and around the time of the sizeable hike in the oil price during 
2005-2006. Interestingly, firms which belong to a particular industry did not necessarily 
display identical patterns of return volatility. Secondly, the metals and minerals analyzed 
exhibited different degrees of dependency on energy prices. The maximum correlation was 
observed for aluminum and the minimum for Nickel. Gold and copper tended to be more 
energy dependent at the upper scales of the data (i.e., trend component). As to spatial 
dependency, there is evidence of it over the first quarter of 2003, the first three quarters of 
2004, and towards the second and third quarters of 2006. 
 
JEL: C5, G1; Keywords: Iraq war, volatility shifts, wavelets, spatial correlation. 
 
1 Introduction 
 
 Following the Asian crisis and 9/11, gauging permanent volatility shifts in 

worldwide financial markets has gained new interest in the finance field (e.g., Hammoudeh, 

and Li 2006; Fernandez 2006a; Covarrubias et al. 2006; Gravelle et al. 2006; Cheong 2007; 

Fernandez and Lucey 2007). Two techniques have been usually utilized in such studies, 

namely, the iterative cumulative sum of squares (ICSS) algorithm and wavelet analysis. 

The ICSS algorithm, which was developed by Inclan and Tiao, G. (1994) and made well-

known in the finance field by Aggarwal, Inclan, and Leal (1999), makes it possible to 
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detect multiple variance shifts in a time series. However, it is usually fairly sensitive to the 

presence of volatility clustering, which in turn leads to an overestimation of the number of 

variance breakpoints. In that aspect, wavelets arise as a more robust tool, which in addition 

allow for a decomposition of volatility at different time horizons (e.g., Fernandez 2007). 

Wavelets have been applied in several studies in the fields of economics and finance from 

the mid-1990’s onwards, such as the permanent income hypothesis, the relation between 

futures and spot prices, the estimation of systematic risk of an asset in the context of the 

domestic and international version of the capital asset pricing model, heterogeneous trading 

in commodity markets, selection of an optimal hedge ratio for a commodities portfolio, 

structural breakpoints in volatility and wavelet-based computation of value at risk, among 

other themes (e.g., Ramsey, J., & Lampart, C. 1998; Ramsey 1999; Ramsey 2002; Lin and 

Stevenson 2001; Gençay, Whitcher, and Selçuk 2001, 2003, 2005; Lien and Shrestha 2007; 

Connor and Rossiter 2005; Fernandez 2005, 2006b; In and Kim 2006; and, Fernandez and 

Lucey 2007). 

The focus of this study is to quantify to what extent the Iraq invasion has had an 

impact on the evolution of stock returns of mining firms through the volatility inflicted on 

energy prices by the current political instability in the Middle East. To that end, we 

concentrate on ten mining companies whose operations are primarily in the Asia-Pacific 

area: Alcan Inc., Antofagasta, Barrick Gold Corp., BHP Billiton, International Nickel Ind., 

Peabody Energy, Phelps Dodge Corp, Rio Tinto plc., Teck Cominco Ltd., and Yanzhou 

Coal Mining Co. Ltd. The production of these companies focus across a range of metals 

from aluminum, copper, gold, silver, zinc, to nickel, and of minerals, such as coal and 

carbon. In order to trace the evolution of the energy and utilities sectors, we resort to the 

Energy Select Sector and Utilities Select Sector SPDRs (spiders). Our sample period covers 

from January 2000 to October 2006. Related studies in this area are McMillan and Speight 

(2001)’s analysis of non-ferrous metals price volatility, and Fong and See (2002)’s and 

Yang et al. (2002)’s work on oil volatility of spot and futures prices, respectively.  

By resorting to wavelets and spatial statistics, we analyze the behavior of volatility 

and the potential presence of structural breaks, the persistence of volatility, and the degree 

of co-movement of stock returns over the sample period under consideration. This article is 

organized as follows. Section 2 presents the mathematical and statistical tools utilized in 
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our empirical analysis, namely, wavelets variance analysis, fractionally differenced 

processes, and spatial correlation. Section 3 describes the data and discusses our empirical 

results. Section 4 concludes. 

2 Methodology 

2.1 Wavelet variance analysis 

 Wavelets make it possible to decompose a time series or signal into high- and low-

frequency components (see, for instance, Percival and Walden 2000). High-frequency 

components describe the short-term dynamics, whereas low-frequency components 

represent the long-term behavior of a series. Wavelets are classified into father and mother 

wavelets. Father wavelets capture the smooth and low-frequency parts of a signal, whereas 

mother wavelets describe its detailed and high-frequency parts.  

 Applications of wavelet analysis usually resort to a discrete wavelet transform 

(DWT). The DWT maps a vector of n observations to a vector of n smooth and detail 

wavelet coefficients2, which make it possible to capture the underlying smooth behavior of 

the data and the deviations from it. By assuming J levels when the length of the data, n, is 

divisible by 2J, we have n/2 wavelet coefficients at the finest scale 21, n/22 coefficients at 

the next finest scale 22, and etcetera.3 The number of wavelet coefficients at a given scale is 

related to the width of the wavelet function. This implies that the lowest scales will mimic 

the short-term fluctuations of the original time series.  

 In particular, wavelet analysis enables us to decompose a time series into its 

fundamental components, where each of them contains information regarding the 

variability of the data at a particular scale. Such a decomposition is called a multi-

resolution decomposition (MRD) of a time series y(t), which is the sum of the orthogonal 

components SJ(t), DJ(t), DJ–1(t),.., D1(t) from scales 1 through J: 

 y(t) ≈ SJ(t)+DJ(t)+DJ–1(t)+...+D1(t),      (1) 

where )t(SJ  and )t(DJ  are denominated the smooth and detail components, respectively. 

Wavelet scales are such that times are separated by multiples of 2j, j=1,.., J. For instance, 

                                                 
2 sJ,k and dj,k, j=1,2,…, J, respectively, where J is the total number of levels. At level j=1, ..., J, the n/2j-vector 
of the detail wavelet coefficients djk is associated with changes on a scale of length 2j–1, whereas the n/2J-
vector of smooth wavelet coefficients sJk is associated with averages on a scale of length 2J. 
3 These are denominated dyadic scales (see Percival and Walden 2000, chapter 1).  
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for daily data, scale 1 is associated with 2-4 day dynamics, scale 2 with 4-8 day dynamics, 

scale 3 with 8-16 day dynamics, etcetera.  

An application of wavelets, which is of particular interest to this study, is the 

decomposition of the variance of a time series into its time-scale components. Specifically, 

wavelet variance analysis enables us to identify which scales are the most important 

contributors to the overall variability of the data (see Percival and Walden, op cit.). In 

particular, let x1, x2,..., xn be a time series of interest, assumed to be a realization of a 

stationary process with variance 2
Xσ . If )( j

2
X τυ  denotes the wavelet variance at scale 

τj≡2j−1, then the following relationship holds:  

 )( j
1j

2
x

2
X τυ=σ ∑

∞

=

        (2) 

where the square root of the wavelet variance is expressed in the same units as the original 

time series.  

 Let ⎣ ⎦jj 2/nn =′  be the number of DWT coefficients at level j, where n is the 

sample size, and let ⎥⎥
⎤

⎢⎢
⎡ −−≡′ )

2
11)(2L(L jj  be the number of DWT boundary coefficients4 at 

level j (provided that jj Ln ′>′ ), where L is the width of the wavelet filter. An unbiased 

estimator of the wavelet variance based on the DWT is given by 
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 Given that the DWT de-correlates the data, the non-boundary wavelet coefficients at 

a given level (dj) are zero-mean Gaussian white-noise processes. Under the null hypothesis 

of variance homogeneity: 

 H0: )dvar(....)dvar()dvar(
1n,j1L,jL,j '

j
'
j

'
j −+

===  

whereas under the alternative 

 H1: )dvar()....dvar()dvar(..)dvar( 1n,j1't,j't,jL,j '
j

'
j −+ =≠==  

where t′ is an unknown breakpoint. 
                                                 
4 ⎣ ⎦x  and ⎡ ⎤x  represent the greatest integer ≤x and the smallest integer ≥x, respectively. The boundary 
coefficients are those obtained by putting together some values from the beginning and the end of the time 
series.  
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The D-test statistic quantifies the maximum deviation (positive or negative) of a 

normalized cumulative sum of squares, Ck, from a hypothetical linear cumulative energy5 

trend: 

D=max(D+,D–)  ⎟
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C , k=Lj′,..., nj′–2.  

 Under the null hypothesis, the ratio of the expected value of the numerator of Ck and 

the expected value of its denominator is (k+Lj′+1)/(nj′–Lj′), which is a linear function of k. 

Therefore, the null hypothesis will be rejected when D departures from this expected linear 

increase. Details on the computation of the critical values of the test are given in Percival 

and Walden, op cit., chapter 9.  

2.2 Fractionally differenced processes 

 A time series xt is said to have long-memory or to be a fractionally differenced 

process if its autocovariance sequence decays at a rate slower than that of an autoregressive 

moving average (ARMA) process. Mathematically, if λs=cov(xt,xt+s), s=−1,0,1 and there 

exist constants C and β, such that 1
Cs

lim s
s =

λ
β∞→ , then xt is a long-memory process. 

Furthermore, 1
Cs

lim s
s =

λ
β∞→  if and only if 1

|f|K
)f(Slim 0f =α→ , where α+β=−1, K is a 

constant, |f|<1/2, and S(f) is the spectral density function of the process, where S(f)∝ |f|α, 

for f small. 6 

The exponent α=−2d is called the spectral exponent, where d represents the long-

memory parameter. If 0<d<1, xt is a long-memory process. In particular, if 0<d<0.5, xt is 

                                                 
5 The energy-concentration function of a vector x=(x1, x2, …, xn)′ is defined as ∑∑
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=
n
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where x(i) is the ith-largest absolute value in x 
6 In general 

α
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, |f|<1/2, where 2
εσ  represents the innovation variance.  
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stationary but shocks decay at a hyperbolic rate, while if 0.5≤d<1, xt is non-stationary. On 

the other hand, if −0.5<xt<0 is stationary and it has short memory. 

Percival and Walden, op cit., chapter 9, discuss how d can be estimated from a 

regression of the logarithm of the wavelet variance on the logarithm of the corresponding 

scale. Specifically, an approximation to the wavelet variance is given by 

df
|)fsin(2|

2df)f(S2)(
j
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j

1j
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For j≥3, sin(πf)≈πf, from which 
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)(        (6) 

Given that )( j
2
X τυ  is unknown, an estimator is called for. Specifically, if the 

maximal overlap DWT (MODWT) is considered7, an unbiased MODWT estimator of the 

wavelet variance is given by  
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where 2
t,jd

~
 is the MODWT-wavelet coefficient at level j and time t, Mj≡n–Lj+1, 

1)1L)(12(L j
j +−−≡  is the width of the MODWT filter for level j, and n is the number of 

observations in the original time series. While there are n MODWT-wavelet coefficients at 

each level j, the first (Lj–1)-boundary coefficients are discarded in order to obtain an 

unbiased estimate. 

 )(ˆ j
2
X τυ  is known to be approximately distributed as the product of a chi-square 

random variable with η degrees of freedom and the constant ητυ /)( j
2
X . Percival and 

Walden, op cit. define the random variable 
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7 The non-decimated DWT is a non-orthogonal variant of the DWT, which is time-invariant. That is to say, 
unlike the classical DWT, the output is not affected by the date at which a time series starts to be recorded. In 
addition, the number of coefficients at each scale equals the number of observations in the original time 
series. The scaling )l

~
( k and wavelet )h

~
( k  filter coefficients for the MODWT are rescaled versions of those of 

the DWT, lk and hk. Specifically, 2/ll
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where ψ(.) is the digamma function. By properties of the chi-square distribution, 

))(ln())(y(E j
2
Xj τυ=τ  and ⎟⎟
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⎞
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⎛ η
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j , where ψ′(.) is the trigamma function. 

Therefore, from (6) and (8), the following regression model can be stated 

jj21j )ln()(y ε+τβ+β=τ        (9) 

where )2/ln()2/()/ˆln( jj
2
X

2
Xj η+ηψ−υυ≡ε  is an error term with zero mean and variance 

equal to ψ′(ηj/2).  

 A weighted-least square estimator (WLSE) of β2 is given by  
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where ωj=(ψ′(ηj/2))−1.  

 The WLSE of d is therefore given by 
2

1ˆ
d̂ wlse,2 +β
= . 

2.3 Spatial autocorrelation 

 One way to quantify contemporaneous dependency in financial markets is through 

spatial autocorrelation, a concept developed in the field of spatial statistics (e.g., Haining 

2003). Specifically, spatial autocorrelation aims at measuring whether an event at a specific 

point in space affects another. Spatial dependency is usually associated to geographic 

proximity or contiguity. Although spatial statistics has been widely applied in other fields, 

such as geography and urban economics, its use to tackle financial phenomena is fairly 

recent (e.g., Frexeda and Vaya 2005).  

 A well-known statistic to test for the presence of spatial autocorrelation is Moran’s, 

which computed as 

 
∑

∑∑ϖ
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where ϖij is the (i, j)-element of the so-called spatial weights matrix, which measures the 

degree of dependency between regions i and j, n is the number of observations, S is the sum 
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of the elements of the weights matrix, and zi is the normalized value of the variable 

analyzed in region i. As already mentioned, dependency is associated with geographical 

proximity. However, the definition of the weights will depend on the object of study. The 

spatial weights matrix is an n×n matrix, although not necessarily symmetric, whose 

elements on the main diagonal are zeros. The distribution of M, under the null hypothesis 

of no spatial autocorrelation, can be derived by assuming that zi and zj are identically 

distributed and correspond with independent draws from a normal distribution.  

3 Empirical analysis 

3.1 The data 

 Our data set is comprised of the following 12 series (2 spiders and 10 stock price 

series), recorded at a daily frequency, and which are freely available at 

http://finance.yahoo.com: Alcan Inc., Antofagasta, Barrick Gold Corp., BHP Billiton, 

International Nickel Ind., Peabody Energy, Phelps Dodge Corp, Rio Tinto plc., Teck 

Cominco Ltd., and Yanzhou Coal Mining Co. Ltd. In order to trace the evolution of the 

energy and utilities sectors, we resort to the Energy Select Sector and Utilities Select Sector 

SPDRs (spiders). 

Some descriptive statistics of the data are presented in Table 1. The sample period is 

January 2000-October 2006, except for those cases in which shorter time spans were 

available. As is empirically observed in most applications, the individual return series reject 

normality, according to Shapiro-Wilk’s test. On the other hand, the inter-quartile range 

suggests that the returns on Rio Tinto and Teck Cominco were the most volatile, followed 

by those on Barrick Gold and Peabody Energy. The production of the sampled companies 

focus across a range of metals from aluminum, copper, gold, silver, zinc, to nickel, and of 

minerals, such as coal and carbon. Detailed information on each company profile is 

provided in Table 2. 

The analysis of the individual series was carried out by using their corresponding 

sample periods. In order to compute paired correlations and Moran’s statistic, we focused 

on the July 2001-October 2006 period, which covers 9/11, the declaration of the war on 

terror, and the subsequent invasion of Iraq. 
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3.2 Behavior of volatility 

Based on the unbiased MODWT estimator of the wavelet variance given by 

equation (7), we constructed rolling estimates of volatility for the two returns series on the 

SPDRs and for the return series on the ten afore-mentioned mining companies at scales 1 

and 3 (i.e., 2-8 and 8-16 day-dynamics, respectively). Our estimation results are depicted in 

Figure 1, (a) through (f). Although there is not a single pattern, in general volatility was 

high around 2003-2004, it tended to decrease between 2004 and 2005, and it increased 

again towards 2006. In other words, it appears that the returns on most mining firms 

became especially volatile around the time of the declaration of war on terror and the 

subsequent invasion of Iraq, and around the time of the sizeable hike in the oil price during 

2005-2006.8 

Some exceptions to such a stylized pattern are the utility SPDR and Barrick Gold, 

whose volatility reached its peak during 2003-2004 to decline thereafter (Panels (a) and (f), 

respectively); International Nickel Inc. (Inco), whose volatility exhibited a decreasing trend 

from 2002 onwards (Panel (b)); and, Teck Cominco, whose return series suggests that the 

time scale can be an important factor to take into consideration. For instance, at scale 1, the 

return volatility of Teck Cominco behaved similarly to that of Barrick Gold. However, at 

scale 3, which captures longer-term dynamics, its volatility exhibited an increasing trend 

from 2002 onwards.  

Interestingly, firms which belong to a particular industry did not necessarily share 

an identical pattern of return volatility. This is the case for the coal mining firms Peabody 

and Yanzhou (Panel (e)), and the copper mining firms Antofagasta and Phelps Dodge. 

Indeed, Peabody’s return volatility exhibited a U-shaped pattern, while that of Yanzhou 

exhibited a U-shape between 2002 and 2005, which reversed towards 2005 to end up 

reaching a minimum towards the end of 2006. In turn, the greatest contrast between 

Antofagasta and Phelps Dodge is observed at scale 3, where the former showed a 

decreasing trend between 2002 and 2003, while the latter reached its peak around 2003 to 

decline thereafter. A possible explanation for this finding may lie in the degree of 
                                                 
8 The price of standard crude oil on NYMEX increased from $25/barrel in September 2003 to $78 per barrel 
in mid July 2006. Such a considerable increase was partially explained by the instability in the Middle East—
the largest oil-producing region of the world. However, other forces behind it were 2005’s Hurricane Katrina, 
strikes and political problems in Venezuela and West Africa, declining petroleum reserves in the United 
States, and the depreciation of the U.S. dollar against the Euro.  
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diversification of a firm. Indeed, according to Table 2, Phelps Dodge and Yanzhou are 

more diversified than their counterparts. 

A further characterization of volatility can be carried out by computing a weighted-

least square estimate of the long-memory parameter, d, of absolute returns (i.e., a proxy for 

volatility), as discussed in Section 2.2. Figure 2 (a)-(b) reports the rolling d-estimate, along 

with a 95-percent confidence band, for the two SPDRs, and two mining companies: Teck 

Cominco and Inco. The computed series exhibit some interesting patterns. The utilities 

SPDR presented volatility persistence in 2002-2003 (i.e., d>0), no persistence between 

2004 and 2005, and again some persistence towards the end of the sample period. The 

absolute return on the energy SPDR in turn presented persistence only prior to 2004, 

whereas around the third quarter of 2004, it became anti-persistence (i.e., d<0). Thereafter, 

no persistence was observed in statistical terms.  

The absolute return on Teck Cominco shares some similarities with that on the 

energy SPDR. Indeed, it was persistent for the most part between 2002 and 2005, but it 

eventually became anti-persistent (beginning of 2006 onwards). Interestingly, we see that 

Inco’s returns series was not only relatively less volatile, but it also exhibited little evidence 

of persistence. (This was present only in 2002). 

An empirical regularity, which has been documented in the finance literature, is the 

positive correlation between squared or absolute returns and trading volume. Such finding 

has received theoretical support from the mixture of distribution hypothesis (MDH) due to 

Clark (1973). The MDH states that the variance of returns and trading volume are driven by 

the same latent variable, which captures the arrival of information relevant to the price-

formation process. A refinement of the MHD, due to Tauchen and Pitts (1983), is the 

bivariate mixture model (BMM), in which volatility and trading volume are jointly 

determined by the latent new information arrival. If the BMM model is correct, trading 

volume and volatility should exhibit the same time-dependence process. This issue is 

discussed in detail in a recent article by Ané and Ureche-Rangau (2006), who find that the 

relation between volatility and trading volume seems weaker than what the BMM would 

suggest. 

In order to find out whether fluctuations in persistence may be linked to changes in 

trading volume, we constructed a rolling estimate of wavelet correlation between absolute 
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returns and trading volume. Similarly to the unbiased MODWT-variance estimator, the 

MODWT covariance between the returns on X and Y at scale τj can be obtained as 

)Y(
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Our computations are reported in Figure 3 for the two series that exhibited anti-

persistence along the sample period, that is, the energy SPDR and Teck Cominco. For the 

raw data and scale 5 (32-64 day dynamics), we observe that the correlation between the 

absolute return on the Energy SPDR and its trading volume exhibited an increasing trend 

after the third quarter of 2004, period around which the correlation between the two series 

reached a minimum (Panel (a) of Figure 3). Interestingly, around that time period the 

absolute return was anti-persistent. However, the high correlation between the two series at 

scale 5 during 2006 (equal to 0.6) coincides with a period in which the absolute return 

displayed no persistence. As reported in previous research (e.g., Ané and Ureche-Rangau, 

op cit.), trading volume tends to be more persistent than absolute returns. Results not 

reported here show that the trading volume of the energy SPDR was persistent along most 

of the sample period, with a d parameter ranging between 0.1 and 0.3.  

For the Teck Cominco series, there is a more distinct pattern between volatility 

persistence and the co-movement between the absolute return and trading volume. Indeed, 

the period of highest volatility persistence (Panel (b) of Figure 2) coincides with that of 

lowest correlation between the absolute return and trading volume (Panel (b) of Figure 3). 

On the other hand, the anti-persistence of the absolute return takes place around the period 

of highest correlation between the absolute return and trading volume in the raw data and at 

the first scale component (first and second quarters of 2006). Once again, computations of 

the persistence of trading volume show that this tended to be more persistent than the 

absolute return (d ranged between 0.1 and 0.25 during 2002-2006).  

In sum, the above results for Teck Cominco suggest that it is possible that trading 

volume may have more incidence on the persistence of volatility than it has been reported 

in previous studies. The next question we address is whether the fluctuations in volatility 

level and persistence may be associated with permanent shifts in long-run volatility. In 
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order to answer this question, we resort to the test of constancy of variance of Section 2.1 

and compute a rolling series of the D-test statistic, along with its corresponding 95-percent 

significance level, at scales 2 and 3 for the two SPDRs and Teck Cominco and Alcan. We 

choose these four series because of the pattern of volatility shifts they display (Figure 4 (a)-

(d)).  

First of all, the energy SPDR exhibits several breakpoints at scales 2 and 3 (Panel 

(a)). In particular, at a 2-8 day horizon (i.e., scale 2), the years 2003 and 2005 look 

particularly unstable. At an 8-16 day horizon (i.e., scale 3), the number of breakpoints tends 

to disappear towards the beginning of 2006. However, as before, the period 2001-2004 

suggests the presence of multiple variance shifts. This last pattern is also present in the 

utilities SPDR. However, in this series there is mostly no evidence of variance shifts from 

the first quarter of 2005 to the end of the sample.  

The two depicted mining companies also display different variance shifts patterns, 

particularly at a longer-term horizon. Indeed, at scale 3, Alcan exhibited several variance 

constancy violations, particularly in 2003 and 2005, while Teck Cominco displayed 

virtually none. At scale 2, by contrast the two series presented only a few number of 

variance shifts. (Alcan looked more unstable towards the end of the sample period). In sum, 

at least at scale 3, the pattern of Alcan resembles to some extent that of the Energy SPDR. 

We conjecture that an explanation to this empirical finding is that Alcan co-moves more 

closely with the Energy SPDR than most of the other metals and minerals under analysis 

do, as we will analyze next. 

3.3 Co-movement 

We utilize two techniques to quantify the degree of co-movement in paired returns: 

a rolling-estimate of wavelet correlation and a rolling estimate of Moran statistic of spatial 

autocorrelation.  

 Figure 5, Panels (a) through (f), exhibits the rolling estimates of the paired 

correlation of raw returns and returns at scales 2 and 5 for six selected pairs: the Energy and 

Utilities SPDRs, and the corresponding pairs of the Energy SPDR with Alcan, Barrick 

Gold, Rio Tinto, Inco, and Teck Cominco. The motivation is look at the linkages between 

the returns on mining companies and on the Energy SPDR.  
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 Panels (c), (d), and (f) show that the rolling pair-wise correlation coefficients 

between the Energy SPDR and Barrick, Rin Tinto, and Teck Cominco experienced a 

significant increase from 2003 onwards. For instance, for the Rio Tinto case, at scale 5 (i.e., 

32-64 day dynamics), the correlation between the returns on the two series increased from 

−0.4 in 2003 to 0.4 in 2006. By contrast the correlation between Inco and the Energy SPDR 

in the raw data and at scale 2 was relatively small along the whole sample period (the peak 

in the raw data was 0.06 and 0.1 at scale 1). However, in the long-term component (scale 

5), we found a much larger correlation, of around 0.6, towards the end of 2006. 

 The evolution of the rolling correlation between Alcan and the Energy SPDR 

deserves some attention. In general, we see that this was greater than for the other metals 

and minerals depicted in the raw data and at scale 2. Indeed, in the raw data, the correlation 

fluctuated between 0.35 and 0.55. The maximum correlation was observed in 2003, rather 

than by the end of the sample. At scale 2, a peak of 0.5 was also observed in 2003, 

afterwards the correlation tended to decline, to reach momentum again in 2005 and end up 

at a level of 0.5 towards the end of 2006. At scale 5, by contrast the pair-wise correlation 

reached a peak of 0.6 in 2003 and tended to decline thereafter. 

These figures suggest that metals and minerals exhibit different degrees of 

dependency on energy prices. Indeed, as Table 3 shows, aluminum is much more energy-

intensive in its production process than copper and primary nonferrous metals are (e.g., 

gold, nickel, and zinc). In our sample, the maximum correlation with the energy SPDR was 

observed for aluminum and the minimum, for Nickel. Gold and copper tended to be more 

energy-dependent at the upper scales of the data (i.e., trend component). This analysis 

stresses the importance of decomposing correlations across timescales in order to have a 

better understanding of the dynamics involved. 

In order to rely on a global measure of co-movement of the sampled series, we 

computed Moran’s statistic of spatial autocorrelation. Towards that end, we considered the 

12 return series in the sample and their corresponding standardized cumulative returns over 

a 3-month rolling window. Cumulative returns are standardized in order that clusters in 

volatility do not bias Moran’s statistic. The (i, j) element of the weights matrix is given by a 

measure of distance between the returns on i and j, dij, where )1(2d ijij ρ−=  and ρij is 

Spearman’s correlation coefficient of trading volume. The definition of dij follows 
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Mantegna and Stanley (2000), chapter 13. For the sake of computational speed, we kept the 

weights matrix fixed across iterations (1,189 in total). We also allowed the weights matrix 

to vary across iterations, but, besides making the calculations much slower, the statistical 

significance of Moran’s statistic exhibited an erratic pattern.  

A 3-month rolling Moran’s statistic, along with a 90-percent confidence band, is 

depicted in Figure 6. As we see, there is evidence of spatial correlation over the first quarter 

of 2003, that is, at the beginning of the Iraq invasion; the first three quarters of 2004, and 

towards the end of the sample period, that is, during the second and third quarters of 2006.  

The sign of Moran’s statistic deserves some interpretation. As we know, the 

distance between firms is measured in terms of Spearman’s correlation coefficient between 

their trading volumes. This implies that two firms whose trading volumes are positive and 

highly correlated will be close to one another, and, hence, their corresponding weight will 

be small. The weights in Moran’s statistic will be largest for paired firms which exhibit 

highly heterogeneous transaction patterns. On the other hand, Moran’s statistic will be 

negative when the numerator of expression (11) is negative. For paired firms, a negative 

sign will arise when one firm’s return is below the sample average while the other’s is 

above it. Overall, this implies that heterogeneity in trading volume will be amplified by 

heterogeneity in returns performance. If we look at Figure 5, we see that, except for the end 

of the sample, whenever statistically significant, spatial correlation is associated with 

negative values of Moran’s statistic.  

4 Conclusions 

 Based on the statistical techniques of wavelets and spatial statistics, we 

characterized the behavior of volatility (e.g., evolution over time, persistence, and presence 

of structural breaks) and the degree of co-movement of the stock returns of ten leading 

mining firms operating in the Asia-Pacific region—Alcan Inc., Antofagasta, Barrick Gold 

Corp., BHP Billiton, International Nickel Ind., Peabody Energy, Phelps Dodge Corp, Rio 

Tinto plc., Teck Cominco Ltd., and Yanzhou Coal Mining Co— over a time period 

predominated by the political turmoil caused by 9/11 and the subsequent invasion of Iraq. 

We concluded that most mining company returns became especially volatile around 

the time of the declaration of war on terror and the subsequent invasion of Iraq, and around 

the time of the sizeable hike in the oil price during 2005-2006. Interestingly, firms which 
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belong to a particular industry did not necessarily display identical patterns of return 

volatility. As to volatility persistence, we concluded that trading volume may have more 

incidence than it has been reported in previous studies. 

In addition, we found that the metals and minerals analyzed exhibited different 

degrees of dependency on energy prices. The maximum correlation was observed for 

aluminum and the minimum for Nickel. These results are line with what is empirically 

observed about the manufacturing processes of these minerals. Gold and copper in turn 

tended to be more energy dependent at the upper scales of the data (i.e., long-term horizon), 

which stresses the importance of resorting to a timescale decomposition of correlation. As 

to spatial dependency, we found evidence for the first quarter of 2003; the first three 

quarters of 2004, and towards the second and third quarters of 2006. 
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Table 1 Summary statistics of daily series 

 
Statistic Energy SPDR Utilities SPDR Alcan Antofagasta Barrick BHP 

Minimum –0.063 –0.089 –0.123 –0.094 –0.117 –0.111 
1st Qu. –0.009 –0.006 –0.012 –0.008 –0.014 –0.011 
Median 0.001 0.001 0.000 0.000 0.000 0.000 
Mean 0.000 0.000 0.000 0.001 0.000 0.001 

3rd. Qu. 0.010 0.007 0.012 0.010 0.014 0.013 
IQ range 0.019 0.013 0.024 0.018 0.028 0.024 

Maximum 0.067 0.085 0.105 0.092 0.104 0.123 
Kurtosis–3 0.92 6.43 2.44 2.82 1.37 2.58 
Skewness –0.19 –0.20 –0.05 0.11 –0.02 0.02 

Pr. SW stat 0.000 0.000 0.000 0.000 0.000 0.000 
Observations 1,717 1,677 1,717 1,780 1,711 1,683 
Sample period Jan 00-Oct 06 Jan 00-Oct 06 Jan00-Oct06 Jan 00-Oct 06 Jan 00-Oct 06 May 00-Oct 06

Statistic Inco Peabody Phelps Rio Tinto Teck Cominco Yanzhou 
Minimum –0.407 –0.155 –0.071 –0.099 –0.200 –0.204 

1st Qu. –0.012 –0.013 –0.010 –0.014 –0.014 –0.013 
Median 0.000 0.001 0.000 0.001 0.000 0.000 
Mean 0.001 0.001 0.000 0.001 0.001 0.000 

3rd. Qu. 0.014 0.015 0.010 0.016 0.017 0.014 
IQ range 0.026 0.028 0.020 0.030 0.030 0.027 

Maximum 0.424 0.12 0.072 0.133 0.210 0.213 
Kurtosis–3 52.58 2.75 0.80 1.19 5.56 6.05 
Skewness 0.62 –0.12 0.00 0.03 –0.10 0.13 

Pr. SW stat 0.000 0.00 0.000 0.000 0.000 0.000 
Observations 1,778 1,366 1,782 1,717 1,715 1,695 
Sample period Jan 00-Oct 06 May 01-Oct 06 Jan 00-Oct 06 Jan 00-Oct 06 Jan 00-Oct 06 Jan 00-Oct 06 

 
Notes: (1) The sampled series are Energy Select Sector SPDR (Energy SPDR), Utilities Select Sector SPDR 
(Utilities SPDR); Alcan Inc. (Alcan), Antofagasta (Antofagasta), Barrick Gold Corp. (Barrick), BHP Billiton 
(BHP), International Nickel Ind. (Inco), Peabody Energy (Peabody), Phelps Dodge Corp (Phelps), Rio Tinto 
plc. (Rio Tinto), Teck Cominco Ltd. (Teck Cominco), and Yanzhou Coal Mining Co. Ltd. (Yanzhou). (2) The 
inter-quartile range (IQ range) is computed as the difference between the third and the first quartile of the 
empirical distribution. (3) ‘Pr. SW stat’ denotes the probability value of the Shapiro-Wilk’s statistic. Under 
the null hypothesis, individual return series are normally distributed. 
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Table 2 SPDR description and firm profiles 
 

Series Description 

Energy SPDR 

Companies involved in developing and producing crude oil and natural gas, and 
provide drilling and other energy-related services (e.g., ExxonMobil Corp., 
ChevronTexaco Corp, and ConocoPhillips)  

Utilities SPDR 
Companies involved in water and electrical power and natural gas distribution 
industries (e.g., Duke Energy Corp., Excelon Corp., and Dominion Resources Inc.) 

Alcan 
Primary aluminum, light gage sheet, foil and packaging materials. Headquartered in 
Montreal, Canada.  

Antofagasta  
Copper and cathodes .Its production is mainly concentrated in South American where 
it operates two quarries in Chile. Headquartered in London,. U.K. 

Barrick 

Gold, copper, silver, and zinc. It holds interests in various gold mineral resources 
located in North and South America, Australia Pacific, and in Africa. Headquartered 
in Toronto, Canada. 

BHP Billiton 

Petroleum, Aluminum, Base Metals (copper, silver, zinc, lead, uranium, and copper 
by-products, including gold), Carbon Steel Materials, Diamonds and Specialty 
Products, Energy Coal, and Stainless Steel Materials. It operates primarily in 
Australia, South America, Africa, and Canada. Headquartered in Melbourne, 
Australia 

Inco 

Nickel, copper, precious metals and cobalt. It operates in two segments: finished 
products and intermediates. Finished products segment comprises the mining and 
processing operations in Canada, and refining operations in the United Kingdom and 
interests in refining operations in Japan and other Asian countries. Intermediates 
segment comprises the mining and processing operations in Indonesia where nickel-
in-matte is produced and sold primarily into the Japanese market. Headquartered in 
Manitoba and Toronto, Canada. 

Peabody  

Coal. It owns interests in 40 coal operations located in the United States and 
Australia, as well as owns joint venture interests in a Venezuelan mine. It also 
develops mine-mouth coal-fueled generating plants; produces coalbed methane; and 
develops Btu Conversion technologies. Based in St. Louis, Missouri, U.S. 

Phelps Dodge 

Copper and molybdenum, with mines and processing facilities in North and South 
America, Europe and China. It also processes other minerals as byproducts, such as 
gold, silver and rhenium. Headquartered in Arizona, U.S. 

Rio Tinto 

Aluminum; copper; diamonds; energy products (e.g., coal and uranium; gold); 
industrial minerals (e.g., borax, titanium dioxide, salt, and talc; and iron ore). It 
operates primarily in North America, Europe, Asia, Australia, and New Zealand. 
Headquartered in London, U.K. 

Teck Cominco 

Zinc, copper, and metallurgical coal, as well as precious metals, lead, molybdenum, 
electrical power, fertilizers, and various specialty metals. It operates in Canada, the 
United States, Latin America, Asia, Europe, and Australia. Headquartered in 
Vancouver, Canada. 

Yanzhou 
Coal, methanol; investments in heat and electricity. It has interests in China and New 
South Wales, Australia. Heardquartered in Zoucheng, the People's Republic of China. 

 
Notes: (1) Information collected from finance.yahoo.com and companies websites; (2) Sector SPDRs are 
unique ETFs (Exchange Traded Funds) that divide the S&P 500 into nine sector index funds: consumer 
discretionary, consumer staples, energy, financial sector, health care, industrial sector, materials, technology, 
and utilities. (http://www.sectorspdr.com).  



 20

Table 3 Manufacturing primary energy consumption by type of fuel and major industry group  
(Trillions of Btu) 

 
 Total Net 

electricity 
Natural 

gas 
LPG Coal Coke & 

breeze 
Other 

Industry        
   All Industries 21,663 2,656 6,835 1,631 2,105 449 7,926 
Petroleum and coal products 6,339 121 811 47 (D) (D) 5,344 
Petroleum refining 6,263 114 756 (D) (D) 0 5,271 
Primary metal industries  2,462 493 811 5 922 424 85 
Electrometallurgical products 38 16 3 (Z) 13 (S) 5 
Gray and ductile iron foundries 94 30 33 1 1 29 1 
Primary copper 32 5 22 (D) (D) 0 (D) 
Primary aluminum 241 183 17 (D) (D) (D) 40 
Primary nonferrous metals (except 
copper & aluminum) 

45 14 12 (Z) 10 (D) 2 

Fabricated metal products  367 115 220 5 (D) (D) (S) 
 
Notes: (1) D: withheld to avoid disclosing data for individual establishments; S: Withheld because relative 
standard error is greater than 50 percent; Z: Less than 0.5 trillion Btu. (2) Net electricity is obtained by 
aggregating purchases, transfers in, and generation from noncombustible renewable resources minus 
quantities sold and transferred out. It excludes electricity inputs from onsite cogeneration or generation from 
combustible fuels because that energy has already been included as generating fuel (for example, coal). (3) 
Natural gas is obtained from utilities, transmission pipelines, and any other supplier such as brokers and 
producers. (4) “Other” includes net steam, and other energy that respondents indicated was used to produce 
heat and power or as feedstock/raw material inputs. (5) Primary nonferrous include, among others, gold, lead, 
nickel, platinum, silver, tin, titanium, and zinc. 
Source: http://allcountries.org/uscensus/951_manufacturing_primary_energy_consumption_for_all.html. The 
information here reported is based on the 1994 U.S. Manufacturing Energy Consumption Survey.  
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Figure 1 Wavelet-based rolling estimate of volatility 
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(b) Aluminum (Alcan) and Nickel (Inco) 
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(c) Copper 
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(d) Aluminum and Base metals (BHP) &Aluminum; copper; energy products, gold (Rio Tinto) 
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(e) Coal 
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(f) Gold (Barrick) & Zinc, copper, and metallurgical coal (Teck Cominco) 
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Note: A rolling-window of 500 observations is utilized in Panels (a) through (f). 
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Figure 2 Rolling estimate of the long-memory parameter for a selected group of series 
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(b) 
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Note: A rolling-window of 500 observations is utilized in Panels (a) and (b). 
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Figure 3 Co-movement of absolute returns and trading volume 
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(b) 
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Note: A rolling-window of 500 observations is utilized in Panels (a) and (b).
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Figure 4 Rolling-D test: some selected return series 
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(c) 
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(d) 
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Note: A rolling-window of 450 observations is utilized in Panels (a) through (d). 
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Figure 5 Rolling estimates of pair-wise correlation coefficients 

 
(a) Energy and Utilities Select Sector SPDRs 
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(b) Alcan Inc. and Energy Select Sector SPDR 
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(c) Barrick Gold and Energy Select Sector SPDR 
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(d) Rio Tinto and Energy Select Sector SPDR 
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(e) International Nickel Ind. Energy Select Sector SPDR 
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(f) Teck Cominco and Energy Select Sector SPDR 
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Note: A rolling-window of 500 observations is utilized in Panels (a) through (f). 
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Figure 6 Spatial autocorrelation 
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Notes: (1) Dashed lines represent a 90-percent confidence band. (2) A 3-month rolling window was used. 
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