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Abstract 
 
 Based on weekly data of the Dow Jones Country Titans, the CBT-municipal bond, 
spot and futures prices of commodities for the period 1992-2005, we analyze the 
implications for portfolio management of accounting for conditional heteroskedasticity and 
structural breaks in long-term volatility. In doing so, we first proceed to utilize the ICSS 
algorithm to detect volatility shifts, and incorporate that information into PGARCH models 
fitted to the returns series. At the next stage, we simulate returns series and compute a 
wavelet-based value at risk, which takes into consideration the investor’s time horizon. We 
repeat the same procedure for artificial data generated from distribution functions fitted to 
the returns by a semi-parametric procedure, which accounts for fat tails. Our estimation 
results show that neglecting GARCH effects and volatility shifts may lead us to 
overestimate financial risk at different time horizons. In addition, we conclude that 
investors benefit from holding commodities as their low or even negative correlation with 
stock indices contribute to portfolio diversification.  
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1. Introduction 
 
 To date, there is an extensive literature on the behavior of volatility of assets returns  

and the effect of this on portfolios. Indeed, the GARCH model and its numerous extensions 

have been widely used to account for the existence of conditional heteroskedasticity in 

financial time series (see, for instance, the survey by [1])3. However, less attention has been 

paid to the detection of multiple shifts in unconditional variance over time. For example [2] 

et seq conclude that persistence in variance may be overstated by not accounting for 

deterministic structural breakpoints in the variance model.  

 

 A relatively recent approach to testing for volatility shifts is the  Iterative 

Cumulative Sums of Squares (ICSS) approach of [3]. This algorithm allows for detecting 

multiple breakpoints in variance in a time series. Examples of this approach to equity 

markets include [4], [5] and [6]. Another subject, which has received attention in recent 

research and that also has important implications for portfolio management, is the existence 

of heterogeneous investors. [7] point out that, for the specific case of commodity markets, 

long-horizon traders will essentially focus on price fundamentals that drive overall trends, 

whereas short-term traders react to incoming information within a short-term horizon. 

Hence, market dynamics in the aggregate will be the result of the interaction of agents with 

heterogeneous time horizons. In order to model the behavior of financial series at different 

time spans, researchers have resorted to wavelet analysis. Wavelet analysis is a refinement 

of Fourier analysis that allows for decomposing a time series into its high-frequency or 

noisy components and its low-frequency or trend components, among many other 

applications. See [8], [9], [7], for commodity and derivative markets, for interest and 

foreign exchange rates see [10], and [11], and for equity markets see [12], [13], [14], [15], 

[16], [17], and [18].  Finally, one of the main issues in the analysis of portfolios is that of 

what the likelihood is of a loss of a particular magnitude. This Value at Risk analysis has 

attracted very significant attention in the economics and finance literature (See for example  

[19], [20], and [21]  but relatively little in econophysics (see [22], [23] and [24] as 

exceptions ).  
                                                 
3 Conditional heteroskedasticity means that the variance of a return series changes over time, conditional on 
past information. GARCH models are designed to capture the time-series dynamics of returns, in which we 
observe persistence or serial correlation in volatility.  
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 The aim of this article is two fold. First, we analyze whether accounting for 

conditional heteroskedasticity and volatility shifts in asset returns really matters when 

comes to quantifying the potential market risk an investor faces. In doing so, we consider 

different time horizons by resorting a wavelet-based decomposition of Value at Risk (VaR). 

Second, we look at the potential diversification gains in terms of the VaR decrease obtained 

by adding commodities to a portfolio.  

 

 This article is organized as follows. Section 2 presents the main methodological 

tools utilized in the empirical section of the article. Section 3 presents some descriptive 

statistics of the data used in the simulations carried out later on. Section 4 presents the 

simulation exercises involving a portfolio primarily composed of stock indices and a 

portfolio that also include spot and futures positions in commodities. We discuss the 

implications of not accounting for correlated volatility and volatility shifts for risk 

quantification. In addition, we focus on the benefits of holding commodities for portfolio 

diversification.  Section 5 concludes.  

 

2. Methodology 

 

2.1 The ICSS algorithm 

 

The ICSS algorithm suggests that a time series has a stationary unconditional variance over 

an initial time period until a sudden break takes place. The unconditional variance is then 

stationary until the next sudden change occurs. This process repeats through time, giving a 

time series of observations with M breakpoints in the unconditional variance along the 

sample: 
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 In order to estimate the number of variance shifts and the point in time at which 

they occur , a cumulative sum of square residuals is computed, ∑
=

ε=
k

1t

2
tkC , k=1, 2, .., n, 

where (εt) is a series of uncorrelated random variables with zero mean and unconditional 

variance 2
tσ , as in (1).  Define the statistic 
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k −=   k=1, 2,.., n,   Ð 0=Ð n=0.    (2) 

 

 If there are no variance shifts over the whole sample period, Ðk will oscillate around 

zero. Otherwise, if there is one or more variance shifts, Ðk will departure from zero. The 

ICSS algorithm systematically looks for breakpoints along the sample . A full description of 

the algorithm is given in [3].  

 

2.2 Wavelet-based betas 

 

Wavelet-variance analysis consists of partitioning the variance of a time series into 

pieces that are associated to different time scales. It tells us what scales are important 

contributors to the overall variability of a series (see [25]). 

Let x1, x2,..., xn be a time series of interest, assumed to be a realization of a 

stationary process with variance 2
Xσ . If )( j

2
X τυ  denotes the wavelet variance for scale 

τj≡2j−1, then the following relationship holds:  

 

 )( j
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2
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∞
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.        (3) 

 

where the square root of the wavelet variance is expressed in the same units as the original 

data.  
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 Let  j
j 2/nn =′  be the number of discrete-wavelet transform (DWT) coefficients at 

level j, where n is the sample size, and let 



 −−≡′ )

2
1

1)(2L(L
jj  be the number of DWT 

boundary coefficients4 at level j (provided that jj Ln ′>′ ), where L is the width of the 

wavelet filter. An unbiased estimator of the wavelet variance is defined as 

 

 ∑
−′

−′=′−′
≡τυ

1n

1Lt

2
t,jj

jj
j

2
X

j

j

d
2)Ln(

1
)(~ .       (4) 

 

 Given that the DWT de-correlates the data, the non-boundary wavelet coefficients at 

a given level (dj) are zero-mean Gaussian white-noise processes.  

 

 Similarly, the  unbiased wavelet covariance between time series X and Y, at scale j, 

can be defined as 
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provided that jj Ln ′>′ . 

 

 However, as pointed out in [25], the sample properties of the DWT variance and 

covariance estimators are inferior to those of non-decimated discrete wavelet transforms, 

also known as stationary wavelet transforms. The non-decimated DWT is a non-orthogonal 

variant of the DWT, which is time- invariant. That is, unlike the classical DWT, the output 

is not affected by the date at which we start recording a time series. In addition, the number 

of coefficients at each scale equals the number of observations in the original time series. A 

                                                 
4 The  x  and  x  terms represent the greatest integer ≤x and the smallest integer ≥x, respectively. 
Boundary coefficients are those that are formed by combining together some values from the beginning and 
the end of the time series.  
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non-decimated form of the DWT is known as the maximal overlap DWT (MODWT).5 The 

unbiased MODWT estimator of the wavelet variance is given by 

 

 ∑
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where 2
t,jd

~
 is the MODWT-wavelet coefficient at level j and time t, Mj≡n–Lj+1, 

1)1L)(12(L j
j +−−≡  is the width of the MODWT filter for level j, and n is the number of 

observations in the original time series. While there are n MODWT-wavelet coefficients at 

each level j, the first (Lj–1)-boundary coefficients are discarded. (Retaining such boundary 

coefficients leads to a biased estimate).  

 

 Likewise, the unbiased MODWT estimator of the wavelet covariance can be 

obtained as  
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 In the asset pricing model of [26], the wavelet-beta estimator for asset i, at scale j, is 

defined as 
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where )(ˆ
j

2
RR mi

τυ  is the wavelet covariance of asset i and the market portfolio at scale j, and 

)(ˆ
j

2
Rm

τυ  is the wavelet variance of the market portfolio at scale j.  

 

An R2 for each scale can be computed as follows 

 

                                                 
5 The scaling )l

~
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( k  filter coefficients for the MODWT are rescaled versions of those of the 

DWT. Specifically, 2/ll
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2.3 Wavelet-based value at risk 

 

 From the empirical representation of the CAPM, we have 

 

 ifmiifi )RR(RR ε+−β+α=− .   k=1, 2,...,k.  (10) 

 

From equation (10), the variance of excess return i and the covariance of excess returns i 

and j are given, respectively, by 
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i εσ+σβ=σ , i=1, 2,.., k, 

 2
mjiij σββ=σ ,  i, j=1, 2,.., k,  i≠ j 

 

where 22
i i
)(E εσ=ε  and E(ε iε j)=0, ∀i≠j.  

 

 Consequently, the variance-covariance matrix of the k excess returns is given by 
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 The (1–α) %-Value at Risk (VaR) of a portfolio of k assets is then 
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where ω  is a k x 1 vector of portfolio weights, V0 is the initial value of the portfolio, and 

l(α)≡Φ−1(1−α), where Φ(.) is the cumulative distribution function of the standard normal.  

 

 For an equally-weighted portfolio, such that ωi=1/k ∀ i, the VaR boils down to 

 

 ∑∑
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 As k becomes large, 
2k

1i
i

2
m0 k/)(lV)(VaR 







 βσα≈α ∑
=

. That is, for a well-

diversified portfolio, all that matters is systematic risk.  

 

 We use equation (13) to compute the value at risk at different time-scales. In 

particular, the VaR at scale j can be obtained by evaluating equation (13) at the j-scale 

components of the variance of the market portfolio return, the betas of the k stocks, and of 

the variances of the error terms that capture non-systematic risk:  
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 In order to obtain )( j
2

i
τσ ε , we use the relation )()()()( j

2
j

2
mj

2
ij

2
i τσ+τστβ=τσ ε . 

That is, 

 

 )()()()( j
2
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2
ij

2
ij

2 τστβ−τσ=τσ ε .      (15) 

 

The variance of stock i at scale j, )( j
2
i τσ , the beta of stock i return at scale j, )( ji τβ , and 

the variance of the market portfolio at scale j, )( j
2
m τσ , can be computed using equations 

(6) and (8).  

 

2.4 Long-memory processes 
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 [7] discuss how to obtain the long-memory parameter of a time series from wavelet 

analysis. Specifically, a time series yt is said to be a long-memory process if its 

autocovariance sequence decays at a slower rate than that of an ARMA process. 

Mathematically, if λs=cov(yt,yt+s), s=−1,0,1, and there exist constants C and β , such that 

1
Cs

lim s
s =

λ
β∞→ , then yt is long memory process. Furthermore, 1

Cs
lim s

s =
λ

β∞→  if and only 

if 1
|f|K
)f(S

lim 0f =α→ , where α+β=−1, K is a constant, |f|<1/2, and S(f) is the spectral 

density function of the process.  

 

 The exponent α  is called the spectral expone nt, and it has been shown to equal −2d, 

where d represents the long-memory parameter, as usually referred to in time series 

analysis. [7] point out that d can be estimated from a regression of the logarithm of the 

wavelet variance on the logarithm of the scale. If 0<d<1, yt is a long memory process. In 

particular, if 0<d<0.5, yt is stationary but shocks decay at a hyperbolic rate, while if 

0.5≤d<1, yt is non-stationary.  On the other hand, if −0.5<yt<0 is stationary and has short 

memory. 

 

3. The data 

 

 Our sample consists of weekly returns on the Dow Jones Country Titans (Australia, 

Canada, Germany, Hong Kong, Italy, Japan, The Netherlands, Spain, Sweden, Switzerland, 

and The United Kingdom), the Dow Jones Global 50,6 the Dow Jones Industrial, Moody's 

commodities index7, CBT-municipal bond, CBT-10 year US T-note, LME-spots prices of 

copper, nickel and zinc, and futures prices of corn and wheat. All indices and prices are 

                                                 
6 The Dow Jones Global Titans is made up by fifty internationally based and globally oriented companies, 
such as Microsoft, Nestle, Toyota Motor Corp., Time Warner Inc., and Coca-Cola. The Dow Jones Country 
Titans in turn generally represent the biggest and most liquid stocks traded in individual countries.  
7 Moody´s commodity index is an average of eighteen leading commodities, including corn, soybeans, wheat, 
coffee, hogs, steers, sugar, cotton, wool, aluminum, copper scrap, lead, steel scrap, zinc, rubber, hides and 
silver. The index is based on daily closing spot prices.  
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expressed in US dollars and span the period from January 1992- December 2005. The data 

sources are Datastream and Ecowin.  

 

 Table 1 presents some desc riptive statistics of the data. The returns on the nickel 

spot price and the wheat futures price stand out for their high volatility, measured by the 

interquartile range, followed by the DJ Hong Kong Titan. The least volatile return series are 

those on the Moody’s commodity index, the CBT-municipal bond and the CBT-10 year US 

note. As usual, all return series strongly reject the assumption of normality, according to the 

Shapiro-Wilk and Jarque-Bera tests.  

 

 Given that we are ultimately interested in quantifying systematic risk, we compute 

the beta of each return series for different time horizons (scales). The proxies for the market 

portfolio and the risk-free asset are the DJ Titans Global and the CBT-10 year US note, 

respectively. As Table 2 shows, returns on metals and grains futures display little market 

risk as compared with those on the DJ Country Titans (e.g., Australia and the UK). This is 

particularly so for grains futures, whose betas are close to zero, and sometimes even 

negative, at different time horizon. In general, we  observe that for the DJ Country Titans, 

beta tends to increase as the time horizon increases. In other words, the CAPM has greater 

predictive power in the long than in the short run, as [26] concluded.  

 

 In order to asses whether our series show long memory processes, we follow 

procedure of [7]. Table 2 presents our results. There is some evidence of long memory,  

particularly in the squared returns on the DJ Titans Netherlands, DJ Titans Switzerland and 

the wheat futures. In addition, for all the absolute and squared return series, the estimate of 

d is less than 1, which suggests that all volatility series are stationary.  

 

4. Portfolio simulations 

 

We follow two procedures to quantify the portfolio risk. One consists of fitting a 

generalization of a GARCH model to the individual return series, after accounting for 

structural breaks in volatility. In order to determine such breaks, we utilize the ICSS 
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algorithm. The output obtained from the ICSS algorithm is used to construct dummy 

variables, which are incorporated into the variance equation of each return series. Table 4 

reports the volatility shifts detected in the weekly returns. Most series exhibit structural 

breaks around the Asian crisis and at the beginning of the Iraq invasion. Three series do not 

present any shifts at all: the DJ Titan Australia index, the copper spot price, and the wheat 

futures price.  

 

Given that we previously found some evidence of long memory in the returns 

volatility, a standard GARCH model may be inadequate. A possibility would be to utilize a 

fractionally integrated GARCH model. Alternatively, a generalization of the GARCH 

model, which allows for long memory in the conditional variance than a standard GARCH 

model, may prove suitable. In particular, we employ the Power GARCH model of [27]. 

This model has been used widely (See [28], [29], [30], [31]). The PGARCH model is given 

as  

 

 rt=δ ′xt+εt ,  εt=σtzt, zt~IID (0,1), t=1, 2..., T   (16) 

where  

 δ
−

=

δ
−−

=

δ σβ+εγ+εα+α=σ ∑∑ it

q

1j
jitiit

p

1t
i0t )|(| , 

and α0>0, δ>0, α i≥0, i=1,..., p, β j≥0, j=1,..., q and |γi|<1, i=1,..., p.  

Many GARCH variants can be nested in the PGARCH model. For instance, if δ=2 

and γi=0 ∀i, we have a GARCH model; if δ=1, we have the threshold GARCH model, 

etcetera. For some of our return series, the estimated δ  is close to 2, indicating that a 

GARCH model seems satisfactory.8 Given the existence of structural breaks in 

unconditional variance in most return series, we consider a more general function for the 

conditional variance equation, k

1m

1k
kit

q

1j
jitiit

p

1t
i0t d)|(| ∑∑∑

−

=

δ
−

=

δ
−−

=

δ ϖ+σβ+εγ+εα+α=σ , where 

dk is a dummy variable that takes on the value of 1 between dates of breakpoints and zero 

                                                 
8 We fitted FIGARCH(1,1) models to the return series, but in some cases the sum of the ARCH and GARCH 
coefficients was greater than 1, giving rise to a non-stationary process.  
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otherwise. If there are m structural breakpoints, m−1 dummy variables are included in the 

conditional variance equation.  

 

The second approach we use to model the behavior of returns consists of a semi-

parametric procedure, which is discussed in [32]. Specifically, the tails of the distribution 

can be modeled by means of the generalized Pareto distribution, while the empirical 

distribution can be used to model the center of the distribution. That is, parametric and non-

parametric approaches are used to model the tails and the center of the distribution, 

respectively.  

 

To carry out the simulation exercises, we first form an equally-weighted portfolio 

made up by nineteen assetsthe DJ Country Titans, The Dow Jones Industrial, Moody´s 

commodity index, the municipal bond, the three metals (copper, nickel, zinc), and the 

grains futures (corn and wheat). The first simulation exercise consists of fitting PGARCH 

models to the returns on the nineteen portfolio assets and simulating retur ns data from the  

fitted models.9 The simulated data is used at the next stage to compute the portfolio Value 

at Risk for the raw data and the five wavelet scales, as described in Section 2.3. The same 

procedure is repeated one hundred times. The second simulation exercise is meant to 

quantify the diversification loss incurred by not investing on the metals and the grains. The 

third and fourth simulation exercises are in the same vein, but they are based on the semi-

parametric procedure referred to above. The computer code involved in the  estimation 

process was written in S-Plus 7.0.  

 

 The simulation results are reported in Table 5. Examining Panels (a) and (b), where 

the PGARCH models are reported, we see that there is a clear diversification benefit from 

investing on metals and grains. Indeed, for the raw data, the 95-percent weekly VaR for a 

$1000 investment on the portfolio made up by the nineteen assets (base portfolio) is $9.73, 

whereas for the portfolio excluding the metals and grains the weekly 95-percent VaR 

increases to $13.21, some 35% greater. If we look at different time horizons, we see that 

                                                 
9 We also fit PGARCH models to our proxies of the market portfolio and the risk-free rate in order to simulate 
returns series for the two of them.  
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short-term investors are subject to greater potential losses than long-term investors. For 

instance, for a 8-16 week horizon (scale 3), the 95-percent weekly VaR of the base 

portfolio is $3.48, whereas this amounts to only $1.69 for a 32-64 week horizon (scale 5).  

 

 On the other hand, our simulations based on the semi-parametric procedure show 

that neglecting conditional heteroskedasticity and volatility shifts can lead us to 

overestimate market risk substantially. Indeed, as Panels (c) and (d) of Table 5 show, the 

semi-parametric method yields VaR estimates that are twice as large as those reported in 

Panels (a) and (b), respectively.  

 

5. Conclusions 

 

In this study, we quantify the extent to which modeling conditional 

heteroskedasticity and structural breaks in long-term volatility matters to determine 

systematic risk. In doing so, we compute a wavelet-based measure of value at risk, which 

makes it possible to take account of investors ´ heterogeneous time horizons.  

 

Our simulation results, based on weekly data of the Dow Jones Country Titans and 

spot and futures prices of commodities for the period 1992-2005, show that neglecting 

GARCH effects and volatility shifts may lead us to overestimate financial risk 

considerably, at various investment horizons. In addition, we conclude that investors 

benefit from holding commodities—particularly futuresas their low or even negative 

correlation with stock indices contribute to portfolio diversification.  

 

A potential extension of this research would be to simulate returns from a 

multivariate distribution rather than from marginal distributions, as assets returns will 

generally exhibit some correlation. Most likely, a smaller number of assets should be 

considered in order to make the estimation process computationally tractable.  
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Appendix: Data description 
 

Abbreviation Description 
DJTIAU DOW JONES  AUSTRALIA TITANS 30, USD 
DJTICA DOW JONES  CANADA TITANS 40 ,USD 
DJTIBD DOW JONES  GERMANY TITANS 30, USD 
DJTIHK DOW JONES  HONG KONG TITANS 30, USD  
DJTIIT DOW JONES  ITALY TITANS 30, USD 
DJTIJP DOW JONES  JAPAN TITANS 100, USD  
DJTINL DOW JONES  NETHERLAND TITANS 30, USD 
DJTISP DOW JONES  SPAIN TITANS 30, USD 
DJTISW DOW JONES  SWEDEN TITANS 30, USD 
DJTICH DOW JONES  SWISS TITANS 30, USD 
DJTIUK DOW JONES  UK TITANS 50, USD  

DJINDUS DOW JONES  INDUSTRIALS 
DJTITAN DOW JONES GLOBAL TITANS 50, USD 
CMDTY MOODY'S COMMODITIES INDEX 

CMB CBT-MUNICIPAL BOND 
T-BILL CBT-10 YEAR US T-NOTE 

COPPER COPPER, SPOT, LME, USD 
NICKEL NICKEL, SPOT, LME, ASK, SETTLEMENT, USD 

ZINC ZINC, SPOT, LME, ASK, SETTLEMENT, USD 
CORN CORN, FUTURES 1-POS, CBT, CLOSE, USD 

WHEAT WHEAT, FUTURES 1-POS, CBT, CLOSE, USD 
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Table 1  Some descriptive statistics of the return series  
 

 DJTIAU DJTICA DJTIBD DJTIHK DJTIIT DJTIJP DJTINL DJTISP DJTISW  DJTICH DJTIUK 
Min –0.102 –0.131 –0.133 –0.149 –0.131 –0.100 –0.181 –0.119 –0.199 –0.180 –0.107 

1st. Qu. –0.014 –0.011 –0.013 –0.018 –0.017 –0.020 –0.013 –0.013 –0.017 –0.012 –0.012 
Median 0.003 0.003 0.002 0.003 0.003 –0.001 0.002 0.002 0.003 0.002 0.001 
Mean 0.002 0.002 0.001 0.002 0.001 0.000 0.002 0.002 0.002 0.002 0.001 

3rd. Qu. 0.017 0.017 0.019 0.024 0.020 0.018 0.018 0.019 0.022 0.017 0.015 
Max 0.073 0.098 0.138 0.134 0.117 0.150 0.156 0.080 0.142 0.128 0.117 

Interq. range 0.032 0.028 0.033 0.042 0.037 0.038 0.030 0.031 0.039 0.029 0.027 
 

 DJINDUS CMDTY CMB T-BILL DJTITAN COPPER NICKEL ZINC CORN WHEAT 
Min –0.092 –0.054 –0.050 –0.029 –0.122 –0.123 –0.192 –0.223 –0.312 –0.245 

1st. Qu. –0.011 –0.006 –0.006 –0.005 –0.011 –0.015 –0.022 –0.013 –0.018 –0.023 
Median 0.002 0.001 0.001 0.000 0.002 0.001 –0.001 0.000 0.000 –0.001 
Mean 0.002 0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000 

3rd. Qu. 0.014 0.009 0.007 0.006 0.013 0.017 0.025 0.016 0.016 0.024 
Max 0.098 0.077 0.175 0.029 0.127 0.135 0.254 0.118 0.138 0.216 

Interq. range 0.025 0.015 0.013 0.011 0.024 0.032 0.047 0.030 0.034 0.047 
 

Table 2  Wavelet-based betas of the return series 
 

 Betas R2 
 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Raw Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 

DJTIAU 0.540 0.518 0.522 0.638 0.612 0.767 0.312 0.263 0.314 0.470 0.528 0.628 
DJTICA 0.533 0.536 0.518 0.659 0.525 0.521 0.352 0.311 0.388 0.450 0.470 0.638 
DJTIBD 0.509 0.493 0.528 0.582 0.482 0.583 0.458 0.424 0.491 0.556 0.485 0.666 
DJTIHK 0.330 0.345 0.350 0.340 0.259 0.264 0.245 0.230 0.299 0.284 0.220 0.286 
DJTIIT 0.366 0.386 0.382 0.263 0.321 0.446 0.274 0.287 0.285 0.166 0.290 0.517 
DJTIJP 0.386 0.368 0.373 0.517 0.406 0.365 0.291 0.244 0.300 0.465 0.318 0.296 
DJTINL 0.559 0.527 0.582 0.645 0.606 0.654 0.508 0.471 0.504 0.609 0.649 0.790 
DJTISP 0.481 0.474 0.469 0.502 0.552 0.552 0.326 0.305 0.312 0.354 0.530 0.561 
DJTISW 0.446 0.437 0.445 0.494 0.551 0.520 0.443 0.421 0.429 0.504 0.646 0.662 
DJTICH 0.574 0.566 0.555 0.660 0.557 0.597 0.472 0.449 0.438 0.572 0.653 0.588 
DJTIUK 0.677 0.644 0.659 0.845 0.905 0.948 0.488 0.473 0.454 0.563 0.709 0.724 

DJINDUS 0.757 0.741 0.710 0.875 0.843 0.807 0.526 0.461 0.543 0.727 0.800 0.837 
CMDTY 0.402 0.408 0.426 0.406 0.436 0.673 0.072 0.067 0.091 0.069 0.067 0.274 

CMB 0.192 0.198 0.282 0.080 –0.040 0.336 0.005 0.005 0.012 0.001 0.000 0.013 
COPPER 0.214 0.253 0.217 0.148 0.119 0.354 0.071 0.082 0.091 0.036 0.027 0.214 
NICKEL 0.143 0.164 0.122 0.158 0.074 0.195 0.064 0.072 0.058 0.078 0.020 0.153 

ZINC 0.207 0.222 0.198 0.159 0.200 0.413 0.062 0.061 0.063 0.036 0.060 0.302 
CORN 0.045 0.034 0.068 0.069 0.010 –0.035 0.004 0.002 0.012 0.011 0.000 0.004 

WHEAT 0.050 0.058 0.082 0.014 –0.044 –0.054 0.006 0.008 0.021 0.000 0.005 0.007 
 
Notes : (1) Scale 1: 2-4 weeks , scale 2: 4-8 weeks scale 3: 8-16 weeks, scale 4: 16-32 weeks, and scale 5: 32-

64 weeks. (2) The wavelet-beta estimate for asset i, at scale j, is computed as 
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Table 3  Long-memory in volatility 
 

 Absolute returns Squared returns 
Series d s.e. d s.e. 

DJTIAU −0.02 0.03 0.04 0.03 
DJTICA 0.08 0.03 0.08 0.03 
DJTIBD 0.08 0.03 0.15 0.03 
DJTIHK 0.05 0.03 0.10 0.03 
DJTIIT 0.07 0.03 0.08 0.03 
DJTIJP 0.06 0.03 0.05 0.03 
DJTINL 0.18 0.03 0.23 0.03 
DJTISP 0.08 0.03 0.12 0.03 
DJTISW 0.11 0.03 0.12 0.03 
DJTICH 0.12 0.03 0.18 0.03 
DJTIUK 0.17 0.03 0.22 0.03 

DJINDUS 0.10 0.03 0.13 0.03 
CMDTY 0.04 0.03 0.07 0.03 

CMB −0.01 0.03 −0.13 0.02 
T-BILL −0.03 0.03 0.00 0.03 

DJTITAN 0.14 0.03 0.22 0.02 
COPPER 0.10 0.03 0.16 0.03 
NICKEL 0.03 0.03 0.07 0.03 

ZINC 0.06 0.03 0.08 0.03 
CORN 0.08 0.03 0.09 0.02 

WHEAT 0.12 0.03 0.21 0.02 
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Table 4  ICSS-volatility breakpoints 

 

DJTIAU DJTICA DJTIBD DJTIHK DJTIIT DJTIJP DJTINL DJTISP 
-- 22-Jul-98  22-Jul-98  29-Sep-93  5-Oct-94  7-Apr-93  12-Feb-97  17-May-95  
 20-Jun-01  23-Apr-03  15-Mar-95  19-Mar-03  10-Sep-97  1-Apr-98  10-Sep-97  
 27-Nov-02  19-May-04  24-Sep-97  19-May-04  17-Mar-99  24-Mar-99  18-Feb-98  
   21-Oct-98   10-Dec-03  10-Jul-02  19-Mar-03  
   10-Oct-01    19-Mar-03   
   5-Dec-01    19-May-04   

 
DJTISW  DJTICH DJTIUK DJINDUS CMDTY CMB 

24-Aug-94  7-Jan-98  14-Apr-93  13-Dec-95  6-Jul-94  1-Dec-93  
20-Mar-96  5-Aug-98  7-May-97  26-Mar-97  20-Jul-94  31-May-95  
12-Mar-97  10-Jul-02  8-Jul-98  13-Sep-00  3-Jun-98  7-Jun-95  
29-Jul-98  19-Mar-03  28-Apr-99  19-Mar-03   4-Sep-96  
17-Jul-02  16-Apr-03  10-Jul-02    29-Aug-01  
6-Nov-02   19-Mar-03    9-Oct-02  

19-May-04      4-Dec-02  
          14-Apr-04  

 
T-BILL DJTITAN COPPER NICKEL ZINC CORN WHEAT 

29-Aug-01 9-Feb-94 -- 24-May-00 21-Apr-93 27-Mar-96 -- 
14-Apr-04 1-Oct-97   13-Oct-93 2-Oct-96  

 29-Jul-98   5-Feb-97   
 

Table 5  Value at Risk (VaR) of an equally-weighted portfolio: simulation results  
 

(a) PGARCH(1,1) model accounting for volatility breakpoints (base portfolio) 
 Raw data Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Average 95%-VaR (USD) 9.73 7.28 4.61 3.48 2.21 1.69 

Std (USD) 0.35 0.24 0.21 0.16 0.13 0.18 
(b) PGARCH(1,1) model accounting for volatility breakpoints, excluding metals and grains 

 Raw data Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Average 95%-VaR (USD) 13.21 9.88 6.26 4.72 3.00 2.30 

Std (USD) 0.47 0.32 0.29 0.22 0.18 0.24 
(c) Semi-parametric procedure (base portfolio) 

 Raw data Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Average 95%-VaR (USD) 17.42 12.18 8.60 7.16 4.64 3.45 

Std (USD) 0.18 0.14 0.16 0.19 0.17 0.19 
(d) Semi-parametric procedure, excluding metals and grains 

 Raw data Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 
Average 95%-VaR (USD) 23.65 16.53 11.68 9.71 6.30 4.68 

Std (USD) 0.25 0.19 0.21 0.26 0.22 0.26 
 
Notes : (1) In Panels (a) and (c ), the equally-weighted portfolio (base portfolio) is made up by the DJ Country 
Titans, The Dow Jones Industrial, Moody´s commodity index, the municipal bond, the three metals (copper, 
nickel, zinc), and the grains futures (corn and wheat). In Panels (b ) and (d), the metals and grain are excluded. 
(2) The portfolio investment is USD 1,000 and the VaR is expressed on a weekly basis. (3) The number of 
simulation is 100 in each case. (3) Scale 1: 2-4 weeks , scale 2: 4-8 weeks scale 3: 8-16 weeks, scale 4: 16-32 
weeks , and scale 5: 32-64 weeks. 
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