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Abstract 
 

Using plant-level data on Chilean manufacturing firms for the 1980-2001 period, we 
estimate and characterize disaggregate total factor productivity. We use these 
estimates to study the microeconomic sources of aggregate efficiency, a fundamental 
part of aggregate growth. By decomposing productivity dynamics into production 
reallocation and within plant efficiency changes, we find that reallocation accounted 
for almost all of total efficiency gains in Chile during the past few decades. The entry 
of new, more productive units explains most of these reallocation gains. Within-plant 
productivity growth contributes positively only during the 1990s, due perhaps to a lag 
between the implementation of major market oriented structural reforms -- mostly 
undertaken during the late 1970s and early 1980s -- and their complete effect on the 
economy. Our findings suggest that once reforms were consolidated, unbounded 
within-plant efficiency gains driven by technology adoption and innovation occurred.  
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1. Introduction 
 

The growth of output is mostly accounted for by the dynamics of aggregate efficiency. 
Chilean GDP per working-age person and aggregate total factor productivity (TFP) display 
high-comovement since 1960 (Figure 1)1. The evidence for other developed and developing 
economies, reported by Kehoe and Prescott (2002) and Solimano and Soto (2004) 
respectively, is similar. This positive correlation between output and productivity growth is 
stronger the longer is the time period considered. Thus, to understand aggregate growth, we 
must first understand aggregate efficiency.2  
 
Two sources of productivity gains drive aggregate efficiency over time: the exposure of 
economic units to better methods of production (within-plant efficiency gains), and the 
Schumpeterian creative destruction process through which efficient firms thrive while 
inefficient ones disappear (reallocation driven efficiency gains). The former results from 
the adoption of new and better technologies and the implementation of more efficient 
production processes; the latter, from the reshuffling of resources from less to more 
productive firms and the entry and exit process. A number of papers report evidence for 
developed and developing economies on the importance of plant dynamics in accounting 
for aggregate efficiency gains.3 
 
The recent Chilean experience provides a rich setting to investigate these sources of 
efficiency gains. During the second half of the 1970s and the early 1980s, Chile carried out 
several market oriented reforms. Most distortions on prices and quantities were eliminated 
and producers were forced to compete in foreign markets. Overall, these reforms provided 
an environment that favored efficiency, both through the displacement of resources from 
less to more efficient producers and from the generalized adoption of better technologies 
and production processes. The study of plant-level productivity dynamics allows a 
complete understanding of these sources of aggregate growth.  
 
In this paper we explore the connection between reallocation and productivity dynamics 
using 22 years of longitudinal data, covering the Chilean manufacturing sector. In our 
analysis we track the dynamics of productivity at the plant level, the entry and exit of 
plants, and the reshuffling of resources across continuing firms. Most papers studying the 
recent Chilean growth experience have only partially analyzed the available evidence, as 
they have missed the reallocation effects by concentrating exclusively on aggregate data.4 
Other papers, such as Levinsohn and Petrin (2003), have identified reallocation effects in 
Chile using only data for 1979-86. Those papers, however, are unable to capture the 

                                                           
1 TFP is calculated assuming a Cobb-Douglas production function and a share of capital of 0.35. We multiply 
employment by average working hours according to Instituto Nacional de Estadísticas. We use capital series 
from Ministerio de Hacienda (2004), updated to 2005 using National Accounts. 
2 There is also a recent literature on economic development that has stressed the role of differences in TFP as 
a major force in accounting for the large disparities in international income levels (Parente and Prescott, 2000; 
Prescott, 2002). In this paper, however, we focus exclusively on growth.   
3 See Bartelsman and Doms (2000) for a recent review of the literature. 
4 For a recent analysis, see De Gregorio (2004). 
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complete dynamics resulting from reforms by focusing on a period of time too early and 
too short to allow these policies to fully affect the economy.  
 
Our TFP estimates show the existence of productivity heterogeneity at the micro level.5 In 
particular, even within narrowly defined sectors, at any period of time there are wide 
differences in TFP. This heterogeneity suggests that reallocation can be a potentially 
important source of efficiency gains in Chile. Our results show this is indeed the case. By 
decomposing aggregate total factor productivity into production reallocation and within 
plant efficiency changes, we find that reallocation accounted for almost all of total 
efficiency gains in Chile over the past few decades. The entry of new, more productive 
firms drives most of these aggregate gains. Within-plant productivity growth contributes 
positively only during the 1990s, consistently with the existence of a lag between the 
implementation of major market oriented structural reforms -- mostly undertaken during the 
late 1970s and early 1980s -- and their complete effect on the economy. Once reforms were 
consolidated, unbounded within-plants efficiency gains driven by technology adoption and 
innovation occurred.  

 
Market economies restructure continuously as a response to changing conditions.  Our 
results, and those of a growing literature based on longitudinal databases at the micro level, 
suggest that productivity growth at the aggregate level is closely linked to the ability of the 
economy to efficiently reallocate inputs and outputs across firms. Thus barriers to this 
efficient reallocation process reduce aggregate efficiency and growth. For instance, a 
production subsidy to incumbent firms allows inefficient plants to stay longer in business.  
At the same time, more efficient firms that would have entered the market are left out. 
Financial restrictions, trade barriers, firm entry costs, inefficient bankruptcy procedures, 
bureaucratic red tape, tax burden, labor regulations, and the lack of human capital for 
technology adoption, all distort the natural process of resource reallocation.  Chang et al 
(2005), for instance, provide empirical evidence of a link between growth and measures of 
market flexibility and ease of entry and exit, whereas Hopenhayn and Rogerson (1993) and 
Bergoeing, Loayza and Repetto (2004) develop theoretical models showing that this link is 
a result of the ability of the economy to easily reshuffle resources towards more productive 
uses.  These distortions have both static and dynamic effects. The resulting inefficient 
allocation of resources initially pushes the economy inside its production possibilities 
frontier.  In the long run, because new firms are blocked out, the adoption of new and better 
technologies is delayed. In all cases, growth is reduced.  
 
A number of papers have analyzed different aspects of plant-level TFP using Chilean data 
using similar estimation methods. Pavcnik (2002) studies the effects of trade reform on the 
behavior of within-plant productivity growth. She finds that TFP of continuous plants in 

                                                           
5 Since estimates of plant-level TFP are usually not available, it is common to use average labor productivity 
to study the connection between efficiency and the behavior of plants. TFP is, however, a better measure for 
two reasons. First, labor productivity is endogenous to TFP. Second, its evolution is determined not only by 
changes in multi-factor efficiency but also by the reallocation of inputs. The separate understanding of each of 
these sources of output per capita growth is quite relevant. For instance, while the former is unbounded and 
accounts for long-run growth, the latter is bounded by the efficient allocation of resources and correlates with 
the business cycle. Thus, a full characterization of aggregate efficiency allows a comprehensive understanding 
of long and short run growth.  
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import competing sectors grew much faster than plants in export oriented or nontraded 
sectors after trade was liberalized. Alvarez and López (2005a) compare the performance of 
exporters and non exporters. They find evidence of self-selection into export markets. They 
also find that plant TFP increases after plants begin to export, a fact consistent with 
learning by exporting. Bergoeing, Hernando and Repetto (2005b) study different aspects of 
the dynamics of TFP in the 1980s and the 1990s. Their results show that exiting plants 
experience a downward trajectory of productivity prior to exit, and that entering survivors 
quickly improve their productivity. They also show that more efficient plants are less likely 
to fail. Finally they show that all these effects were more pronounced in the 1990s than in 
the 1980s. Alvarez and López (2005b) look for productivity spillovers coming from export 
activity in manufacturing, in both downstream and upstream sectors. Their results suggest 
that there are positive forward spillovers, as exports in sectors producing intermediate 
inputs have a positive effect on the productivity of firms in downstream industries.   
 
The current paper adds to this growing literature on plant-level TFP by connecting 
manufacturing aggregate efficiency to plant dynamics. The paper is organized as follows. 
The next section describes the manufacturing data we use, the estimation algorithm and the 
theoretical framework of firm exit behavior that supports it. In Section 3 we characterize 
plant-level TFP. In Section 4 we study the contribution of reallocation and within plant 
efficiency changes into aggregate productivity dynamics. The final section concludes. 
 
 
2. Plant level productivity: Data, theory, and estimation procedure 
 
In what follows we describe the data used in this study, a theory of  plant exit and input 
demand based on plant specific productivity shocks, and the algorithm we use to estimate 
plant-level TFP based on this theory, originally developed by Olley and Pakes (1996). 

 
The data 
 
The data in this study come from the Encuesta Nacional Industrial Anual (ENIA), an 
annual survey of manufacturing conducted by the Chilean statistics agency, the Instituto 
Nacional de Estadísticas (INE). The ENIA covers all manufacturing plants that employ at 
least ten individuals. Thus, it includes all newly created and continuing plants with ten or 
more employees, and it excludes plants that ceased activities or reduced their hiring below 
the survey's threshold. The ENIA collects detailed information on plant characteristics, 
such as manufacturing sub-sector at the 4-digit ISIC level, sales, employment, investment, 
intermediate inputs and location. The available data cover the 1980-2001 period.  

 
The treatment of entry and exit is somewhat complicated by the fact that plants falling 
below the minimum employment boundary do not appear in the survey. Thus a plant 
interviewed in any given year, but that fails to enter the sample in the following year might 
not represent an exit. Similarly, a plant appearing for the first time in any given year does 
not necessarily correspond to an entry, as it might represent a growing plant that surpasses 
the ten people boundary. To reduce the extent of spurious identification of plant entry and 
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exit, we artificially raised the sample threshold to 15 employees, following the strategy in 
Micco (1995).6  
 
Unfortunately, the ENIA does not report plant-level prices, so we constructed deflators at 
the 3-digit level from INE’s wholesale price indices. The use of a common industry-level 
deflator might be problematic, as within-industry price differences are imputed as 
productivity shocks.7 Nominal output was thus deflated using these 3-digit ISIC level price 
indices. Deflators for materials were also constructed at the 3-digit ISIC level, using the 
1996 input-output table. All real variables are expressed in 1992 Chilean pesos. Capital 
series were constructed using information on investment and depreciation (Bergoeing, 
Hernando and Repetto, 2005b).   
 
We excluded the tobacco industry (314) and petroleum refineries (353) from the analysis, 
because they are organized as monopolies, operating with very few plants. The estimation 
strategy we use below assumes plant specific shocks are technology driven, and thus rules 
out markup shocks. Syverson (2004) shows that the failure of this assumption invalidates 
the strategy we use.8 The 27 sub-sectors used in this study account for 92% of total real 
gross revenue in the ENIA. 
 
Table 1 presents some basic statistics of our data set at the 3-digit ISIC sector level. The 
first row shows mean values, whereas the second row shows standard errors. Entry and exit 
rates in the first two columns show some variation across sectors. Overall, 5.7% and 6.3% 
of firms enter and exit the market in any given year, respectively. Gross output, capital 
stock and materials are expressed in (natural log of) 1992 Chilean pesos. Labor inputs are 
measured as the annual average of employees working at the firm, corrected by the number 
of days the firm operated in any given year. Electricity is directly measured in quantities, as 
the ENIA gathers information on electricity bought, sold and generated measured in 
thousands of KW per hour.  Output and inputs also show wide variation across and within 
sectors, a fact consistent with idiosyncratic technology and efficiency differences. Across-
plant shocks to efficiency lead to input purchase decisions that vary significantly even 
under identical production functions. Naturally, firms that hire more inputs and that 
produce more efficiently generate more output.  
 
The theory 

 
Assume the economy is populated by a continuum of heterogeneous firms, each one with 
its own level of productivity.9 In every period, given factor prices and the market structure, 
the manager of each firm decides whether to quit production and exit, or to stay in business. 
The exit decision is irreversible. The manager’s decisions are made after facing an 

                                                           
6 We also excluded plants that report no employment, no blue-collar workers, wages, no production days, zero 
gross production, negative value added, gross production lower then value added, exports larger than total 
sales, or no ISIC code. 
7 See Eslava et al. (2004) for the relative relevance of plant-level technology shocks vis a vis demand shocks.  
8 See the estimation strategy section below for a discussion.   
9 In this paper we refer to firms and plants as equivalent economic units, although our data set collects 
information on plants and not on firms. According to Central Bank statisticians, about 3.5% of  plants belong 
to a multi-plant firm in our data set. 
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idiosyncratic productivity shock that is a random draw from an exogenous Markov process. 
If the firm continues in operation, the manager purchases variable factors and chooses 
investment. If the plant quits production, the plant is worth a sell-off value equal to Ψ. Exit 
decisions are based on maximizing expected discounted net cash flows. The firm’s problem 
is 
 
 
 
 
where the function c(•) represents the cost of investment, β the firm’s discount factor, Et the 
expectation operator conditional on all information known at time t, and Vt the value 
function at period t. The profit function of the firm is represented by πt(ωt , kt), which 
depends on the current value of the state variables, capital (kt) and productivity (ωt). The 
function is indexed by time to account for changing market structures and factor and output 
prices. The law of motion for capital is given by  

 
 
 
 
where it is current period’s gross investment. 

 
Conditional on capital stock, kt, equilibrium exit decisions are given by a cut-off level of 
productivity ω∗

τ(kt) as shown by Ericson and Pakes (1995). If ωτ ≥ ω∗
τ(kt) the firm stays in 

business, and if ωτ < ω∗
τ(kt), the firm exits. This cut-off is decreasing in kt if the difference 

between the expected discount value of profits and the sell-off value depends positively on 
capital; i.e. larger firms lose more if they choose to quit. In other words, a larger capital 
stock allows firms to stay in business even if current productivity is relatively low. Finally, 
if a plant stays, its investment demand is given by it = it(ωt, kt). Pakes (1994) shows that for 
any capital stock, the investment function it is strictly increasing in ωt, whenever 
investment is strictly positive. The monotonicity of the cut-off and investment demand 
functions are a key ingredient for the algorithm originally developed by Olley and Pakes 
(1996) and further extended by Levinsohn and Petrin (2003) that is outlined in the next 
subsection. 
 
The Olley-Pakes and Levinsohn-Petrin estimation strategies 
 
The first step in constructing series of TFP is estimating a production function. Within this 
theoretical framework, the empirical estimation of production functions is problematic 
because productivity, a state variable in the firm's decision problem, is not observed by the 
econometrician. Two biases in OLS estimation of the production functions are introduced. 
First, there is a simultaneity problem, as factor demands are correlated with the unobserved 
productivity term. Specifically, if firms with higher productivity are more likely to purchase 
inputs, then OLS estimates of the corresponding coefficients are biased upwards.10 Second, 
there is a selection problem since conditional on survival the econometrician only observes 

                                                           
10 See Griliches and Mairesse (1995) for a thorough analysis of the simultaneity problem. 
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plants with productivity greater than the cut-off. The expectation of productivity depends 
negatively on capital since firms with a larger capital stock can afford to survive with a 
lower productivity level. Thus, the capital coefficients are biased downwards. 

 
Fixed effects regressions do not solve the simultaneity problem since they require the 
productivity term to be constant over time. Given the length of the period considered and 
since structural reforms were undertaken during the period studied, it is highly unlikely that 
productivity remained constant. As a matter of fact, the results in Pavcnik (2002) for the 
1979-86 period suggest that fixed effects regressions do not fully control for the 
endogeneity problem, and thus that plant-level productivity is not constant over time. 
Similarly, balancing the panel of firms does not solve the selection problem, since firms 
that remain in the panel are firms that survived.  
 
To circumvent these problems we use a general estimation procedure proposed by Olley 
and Pakes (OP) and modified by Levinsohn and Petrin (LP).11       
 
Let the production function of firm i at time t be 

 
 
 
 
where yit is log of firm’s i gross output at time t. The variable inputs of production are ls

it 
(the log of skilled labor), lu

it (the log of unskilled labor), and mit (the log of intermediate 
inputs—energy and materials). The natural logarithm of the stock of capital, kit, is a state 
variable. The unobserved shock ωit is the log of plant-specific productivity, whereas µit is a 
mean zero error that accounts for measurement error and for unexpected productivity 
shocks that do not affect the choice of inputs. The former random shock is a state variable 
of the problem, whereas the latter is not. 
 
OP uses the fact that the investment demand depends upon the current state variables, but 
does not affect current production. Thus investment can be used as a proxy for the 
unobserved productivity shock. Specifically, ωit is approximated by a polynomial 
expansion in investment and capital. The selection problem is corrected through an 
intermediate step in which the exit probability of any given plant is estimated using 
polynomial expansions in capital and investment. This estimated exit probability is later 
used to control for the cut-off level productivity under which a plant exits.  

 
A major limitation of the Olley-Pakes strategy is investment lumpiness: a large number of 
firms report zero investment in many years. Unfortunately, the invertibility of the 
investment demand function depends crucially upon observing strictly positive investment. 
LP shows that intermediate inputs can also be used as proxies for productivity, as their 
demand also depends upon the state variables of the problem.  Thus, instead of using 
polynomials in investment and capital, the strategy uses polynomials in intermediate inputs 
and capital. LP use the orthogonally conditions of the problem – i.e., current capital stock 
and lagged variable input demands are not correlated with current productivity 
                                                           
11 See Olley and Pakes (1996), and Levinsohn and Petrin (2003). 
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innovations—and GMM to identify the coefficients of the production function. The method 
allows for the test of overidentifying restrictions. 
 
The dataset and the estimation method have a number of limitations that might induce to 
error in our estimations of TFP below. First, we do not observe labor effort, labor hoarding 
and capital utilization. If these vary, the growth rate of observed inputs does not fully 
capture their service flows. Second, the algorithm used and described below assumes that 
productivity is the only unobserved plant-specific state variable.12  IV techniques are 
preferred in cases where other shocks, such as demand shocks, are relevant. Unfortunately, 
obtaining good instruments at the plant level is a difficult task in most cases. An exception 
is Syverson (2004) that uses market segmentation in the ready-mix concrete industry to 
identify an exogenous source of variability in demand.  Third, we do not allow for 
externalities from the activity of other firms. Fourth, we assume that all firms within a 3-
digit industry use the same production function. Idiosyncratic productivity shocks are the 
only difference across firms within an industry. Finally, we assume that output elasticities 
are constant over time.  
 
3. The dynamics of plant-level productivity in Chile 
 
In this section we characterize the estimates of plant-level TFP. We use these measures to 
describe the evolution of productivity over time. The TFP estimates behave according to 
expected patterns. Moreover, we find extensive heterogeneity in micro efficiency, a 
necessary condition for reallocation to be a relevant source of aggregate efficiency.   
 
Production function estimates 
 
We use the LP estimation strategy to estimate production functions for gross revenue, with 
electricity demand as the proxy for productivity.13  The LP estimation method allows for 
the use of any intermediate input (lagged) as an instrument in the GMM identification 
equations. We chose electricity because quantities are directly measured at the plant-level 
in the ENIA. Materials must be deflated, introducing possible biases as we lack data on 
process at the individual level.14  
 
Gross production, and not value added, is the correct output concept at this level of 
disaggregation. GDP is a value added measure as the economy uses capital and labor for 
producing goods and services. Intermediate inputs are netted out in the aggregation process. 
Alternatively, gross output is the right measure at the plant level as plants’ output consists 
of final and intermediate goods. Firms combine capital, labor and intermediate inputs 
(materials and energy) to produce this gross output.15   

 

                                                           
12 Different market structures are allowed, but these must be either constant over time or random in such a 
way that it does not represent a state variable of the firm. 
13 Only a very small fraction of observations report no electricity consumption (about 1.5% of them.) Some 
plants generate and sell electricity. Our measure of electricity is consumption plus generation minus sales.  
14 Results using materials as a proxy instead are available upon request. 
15 See Basu and Fernald (1995) for a discussion on production functions at different levels of aggregation.  
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Table 2 presents the estimated elasticities of unskilled (blue collar) and skilled labor, 
capital, materials and electricity and their bootstrapped standard errors. The reported 
elasticities exhibit wide variation across sectors. Most coefficients are precisely estimated. 
Only capital cannot be precisely estimated in many sectors, perhaps due to its little 
variability over time, as investment behaves in a lumpy manner.  In about 75% of sectors, 
the null hypothesis of constant returns to scale cannot be rejected.  The estimated degrees of 
returns to scale vary from 0.77 (chemical industry) to 1.77 (iron and steel basic industries). 
The largest elasticity of unskilled labor corresponds to the manufacturing of china, pottery 
and earthenware, a point elasticity of 0.30. The most skilled-labor elastic sector is the 
manufacture of glass products, with an elasticity of 0.26.  The statistically significant 
coefficients on capital vary between 0.09 (food products) and 0.98 (iron and steel basic 
industries).  
 
Pavcnik (2002), using data from the ENIA, obtains elasticities that are quite different from 
those presented here. She uses a much shorter data set (up to 1986 only), and the OP 
strategy with investment as a proxy to perform her estimates. Moreover, although she 
includes materials, she excludes energy from the analysis. Levinsohn and Petrin (2003) 
perform estimates for four 3-digit sectors (311, 321, 331 and 381), using the same sub-
sample of the ENIA that Pavcnik uses. Although we get different point estimates, most of 
the coefficients they obtain are of the same order of magnitude as ours. Since we use the 
same methodology and proxies as LP, the differences in coefficients must be due to the 
samples and deflators used, and to the LP assumption that investment becomes productive 
immediately. 
 
Characterizing plant-level productivity 
 
Next, we characterize the dynamics over time of our estimates of TFP.   
  
Let      represent the estimated of the level of TFP of plant i at time period t, using the 
production coefficients previously estimated with the LP version of the algorithm. That is, 
 
 

 
 

Following the literature, we define aggregate productivity at the 3-digit industry level as 
 
 
 
 
where θit is the share of plant’s i gross revenue in sectoral gross revenue at time t. Figures 
2a-2c displays the full dynamics of this weighted average productivity at the industry level. 
All series are normalized to 100 in 1980. Sectors were classified according to their average 
productivity growth rate over the period. These rates vary from -2.3% and 7.1% per year 
(sectors 342, printing and publishing, and 372, non-ferrous metal industries, respectively). 
Although productivity fluctuates largely over time, 23 out of the 27 sectors display a 
positive annual average productivity growth, indicating that most manufacturing sectors 
have become more productive in Chile over the period of analysis -- the exception being 
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sectors 313, 342, 354 and 371. In other words, mean productivity growth is positive 
reflecting that, over time, industries are growing faster than inputs.  

 
Our estimates of TFP show that there are wide differences in efficiency levels, even within 
a sector in any given year. Figure 3 provides evidence of such heterogeneity. The figure 
shows the ratio of productivity for plants in the ninetieth percentile of the productivity 
distribution relative to the productivity of plants in the tenth percentile. These ratios are 
large, ranging from 8.1 to 11.6. Calculations for specific three digits sectors are consistent. 
These large differences in productivity are a necessary condition for reallocation to be a 
quantitatively relevant source of efficiency gains.  
 
It is interesting to note that over the 1990s, plant-level dispersion increased, in spite of the 
reduction in aggregate volatility relative to the 1980s.16 This higher relative heterogeneity 
during the 1990s may reflect a higher degree of flexibility after the full implementation of 
market structural reforms a decade earlier.17 Greater flexibility allows for a more 
heterogeneous group of firms to enter the market and for greater process experimentation, 
as credit markets deepened and bankruptcy laws and dismissal costs were lowered. 
Moreover, trade reform segmented firms into those that export and those that do not, 
depending upon their efficiency. Trade opening selected the best firms into export markets, 
those who could profitably pay the costs of exporting, and left the less efficient surviving 
firms to exclusively produce for the domestic market.18 Finally, the rise in TFP dispersion 
is also consistent with increases in market segmentation, as less productive plants can 
survive whenever there are departures from complete output homogeneity. 
 
In general, our estimates of plant-level efficiency are consistent with expected patterns. For 
instance, Figure 4 presents the cumulative distribution of productivity for incumbent plants, 
shutdowns and startups. No matter the level of productivity, the TFP distribution of plants 
that exit is to the left of the distribution of productivity of continuing plants. In other words, 
the probability of exceeding any given level of productivity is higher among continuing 
plants than shutdowns, and thus the first distribution first order stochastically dominates the 
second one. The Barrett and Donaldson (2003) test does not reject the hypothesis of first 
order stochastic dominance in both cases. The p-values are 7.15% for the comparison 
between the CDF of continuing plants and entrants, and 0.00% for the comparison between 
the CDF of continuing plants and shutdowns.19 Moreover, bigger, older, and more outward 
oriented plants are more productive.20  
 

                                                           
16 Comin and Mulani (2005) shows that volatility at the aggregate level has decreasead in Canada and the US 
over the past two decades, meanwhile volatility at the firm level has increased.     
17 Eslava et al (2004) also find that productivity heterogeneity increased after major reforms were 
implemented in Colombia.  
18 See Melitz (2003) for a theoretical model and Bergoeing, Micco and Repetto (2005) for Chilean evidence. 
19 The test rejects the hypothesis that the distribution of TFP of entrants stochastically dominates that of 
shutdowns, and viceversa. 
20 See Bergoeing, Hernando and Repetto (2005b) for a complete characterization of Chilean plant-level 
productivity dynamics.  



 11

4. The micro sources of aggregate productivity in Chile  
 
In this section we use our estimates of plant-level TFP to study the microeconomic sources 
of aggregate growth in Chile during the past two decades. We do so by disentangling 
aggregate productivity dynamics into two processes: first, the changes in efficiency within 
firms; second, the reallocation arising from the expansion and contraction of continuing 
plants as well as from the entry and exit of economic units.  

 
We follow Foster, Haltiwanger, and Krizan (1998) in decomposing productivity growth 
into four elements: (i) a within-plant effect, given by incumbents’ productivity growth 
weighted by initial output shares; (ii) a between-plant effect, that captures the gains in 
aggregate productivity coming from the expanding market share of high productivity plants 
relative to the initial aggregate productivity level; (iii) an entry effect which is the sum of 
the differences between each entering plant’s productivity and initial aggregate 
productivity, weighted by its market share; and (iv) an exit effect given by the sum of the 
differences between each exiting plant’s productivity and initial aggregate productivity, 
weighted by its market share.21  The decomposition is given by: 

 
  
 
 
 
 
where ∆ refers to changes over the k-year interval; Pt is the log aggregate productivity level 
of the sector in year t; θit is the share of plant’s i value added in sectoral value added at time 
t, and C, N, and X are sets of continuing, entering, and exiting plants, respectively. Thus, 
incumbents contribute to aggregate log productivity growth if they become more efficient, 
or if the more productive plants increase their market share. New plants contribute 
positively to productivity growth whenever their higher productivity is higher than the 
initial industry average. Exiters do so whenever they are less productive than the initial 
industry average. The last three terms of the decomposition capture the effects of 
heterogeneity. If all plants were identical, then the within-continuers effect would constitute 
the only source of aggregate gains.  
 
Table 3 displays our decomposition results. We report them for the full period and four sub-
periods: 1981-83, 1983-90, 1990-97, and 1997-2001. We also present total log TFP growth 
using total GDP from National Accounts for comparison. Over the early 80s crisis, 
aggregate manufacturing TFP in the ENIA grew due to the reallocation of resources.  Thus 
TFP growth reduced the extent of the crisis within the manufacturing sector. Plants that 
failed were less productive than the average, and resources were reshuffled towards more 
productive incumbents. Although entry exerted a positive effect, its contribution was low 
relative to that of reallocation across incumbents. Within-plant productivity growth was 
negative.  

                                                           
21 There exist several alternative decomposition methods that follow this tradition. See Foster, Haltiwanger, 
and Krizan (1998) for further discussions on alternative decomposition methods.  

)()(

))((

ktkit
Xi

kitktit
Ni

it

kt
Ci

ititit
Ci

kit
t

PpPp

PppP

−−
∈

−−
∈

−
∈∈

−

−−−+

−∆+∆=∆

∑∑
∑∑

θθ

θθ



 12

 
During the rest of 1980s aggregate TFP fell, driven by a negative contribution of within-
plant productivity growth. Over the 1990s, however, TFP grew significantly with a positive 
contribution of the within-plant effect. Except for the slowdown experienced after 1997, 
total reallocation is large and positive.  
 
Overall, reallocation captured almost all TFP growth in the long run -- 96.7% during the 
1980-2001 period --. This effect was mostly driven by the entry of new, more productive 
economic units. Compared to firms that were already producing in the early 1980s, entrants 
faced a more flexible economy, a superior technology, better access to credit markets, and a 
higher supply of skilled labor.  
 

 
5. Concluding remarks 

 
Using Chilean manufacturing plants data for the 1980-2001 period, we have estimated 
micro level TFPs and found that reallocation is key for aggregate efficiency changes. The 
reshuffling of resources across incumbents, and especially the entry and exit process, 
accounted for almost all of total efficiency gains in Chile during the last two decades. 
Moreover, within-plant productivity growth contributes positively only during the 1990s, 
consistently with the existence of a lag between the implementation of major market 
oriented structural reforms -- mostly undertaken during the late 1970s and early 1980s -- 
and their complete effect on the economy. Once reforms were consolidated, unbounded 
within-plant efficiency gains driven by technology adoption and innovation occurred.  

 
The policy implication is evident: exposing firms to the best practices – for instance 
through market oriented policies -- is key to generate conditions that promote aggregate 
growth. On the opposite side, rigidities that block the natural process of birth, expansion, 
and death of plants, and the reallocation of resources among economic units, impede 
growth and limit development. Indeed, flexibility is key to growth. 
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Entry Rate Exit Rate Gross Output Unskilled Labor Skilled Labor Capital Stock Electricity Materials
311 0.053 0.059 12.62 3.65 1.56 10.78 4.45 12.08

0.224 0.236 1.60 1.10 1.24 2.12 1.83 1.64

312 0.059 0.059 13.64 3.71 2.08 11.92 5.28 12.94
0.235 0.236 1.82 1.16 1.42 2.02 1.84 2.02

313 0.041 0.068 13.99 3.95 2.47 12.38 5.23 12.88
0.198 0.252 1.78 1.11 1.43 2.08 1.78 1.84

321 0.043 0.059 12.89 3.66 1.54 11.22 4.63 12.01
0.204 0.236 1.35 1.13 1.29 1.74 1.71 1.41

322 0.063 0.084 12.38 3.55 1.37 10.38 3.62 11.75
0.243 0.277 1.25 1.04 1.16 1.62 1.24 1.30

323 0.040 0.068 13.02 3.61 1.61 11.01 4.59 12.30
0.197 0.252 1.41 0.95 1.03 1.84 1.67 1.51

324 0.054 0.067 12.62 3.79 1.37 10.55 3.87 11.97
0.226 0.250 1.34 1.12 1.20 1.82 1.43 1.27

331 0.077 0.086 12.80 3.86 1.35 11.10 4.82 11.92
0.267 0.281 1.42 1.08 1.14 1.85 1.68 1.52

332 0.076 0.087 12.08 3.51 1.23 10.38 3.78 11.38
0.266 0.282 1.36 1.02 1.11 1.80 1.40 1.37

341 0.067 0.061 13.80 4.04 2.35 12.48 5.81 13.02
0.251 0.239 1.90 1.29 1.61 2.39 2.67 1.94

342 0.049 0.062 12.50 3.24 1.67 11.20 3.97 11.36
0.216 0.241 1.37 1.08 1.30 1.76 1.40 1.53

351 0.064 0.047 13.96 3.57 2.21 12.45 6.02 12.88
0.245 0.211 1.60 1.15 1.35 1.96 2.30 1.71

352 0.041 0.044 13.88 3.54 2.61 12.11 4.71 12.96
0.198 0.206 1.49 1.17 1.31 1.82 1.58 1.50

354 0.055 0.049 13.92 3.62 2.06 12.22 5.40 13.17
0.229 0.216 1.69 0.98 1.24 1.84 1.25 1.76

355 0.046 0.050 12.58 3.49 1.66 11.25 4.94 11.69
0.209 0.217 1.42 1.12 1.19 1.77 1.53 1.53

Table 1. Basic Statistics at the Sector Level
(Mean and Standard Deviation)
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Entry Rate Exit Rate Gross Output Unskilled Labor Skilled Labor Capital Stock Electricity Materials
356 0.075 0.053 13.00 3.68 1.72 11.55 5.43 12.11

0.264 0.224 1.29 1.04 1.13 1.72 1.59 1.39

361 0.058 0.070 12.68 4.27 1.90 11.15 5.87 11.29
0.235 0.256 1.77 1.38 1.48 2.08 1.47 1.85

362 0.028 0.045 13.26 4.07 2.15 11.91 5.40 11.98
0.164 0.208 1.69 1.16 1.36 2.14 2.07 1.57

369 0.060 0.056 12.86 3.63 1.60 11.35 4.77 11.73
0.237 0.230 1.67 1.03 1.31 2.16 2.07 1.70

371 0.054 0.048 13.93 4.24 2.45 12.50 6.30 12.94
0.227 0.214 1.82 1.30 1.47 1.91 2.35 1.89

372 0.057 0.051 15.24 4.48 3.09 13.40 7.49 14.37
0.232 0.220 2.63 1.63 1.80 2.61 3.03 2.85

381 0.060 0.060 12.83 3.61 1.64 10.96 4.41 11.88
0.238 0.238 1.39 1.01 1.18 1.88 1.49 1.46

382 0.064 0.058 12.62 3.50 1.76 11.15 4.37 11.61
0.245 0.233 1.41 1.14 1.27 1.73 1.44 1.55

383 0.049 0.049 13.31 3.73 2.08 11.65 4.71 12.29
0.216 0.216 1.54 1.07 1.30 1.84 1.68 1.44

384 0.062 0.066 12.44 3.60 1.70 11.30 4.42 11.59
0.240 0.248 1.67 1.12 1.26 1.81 1.51 1.81

385 0.040 0.032 12.85 3.32 1.79 11.33 4.30 11.70
0.197 0.175 1.19 0.90 1.14 1.37 1.27 1.24

390 0.043 0.053 12.30 3.29 1.41 10.53 3.86 11.22
0.203 0.224 1.07 0.79 0.97 1.63 1.22 1.16

All 0.057 0.063 12.85 3.65 1.67 11.13 4.57 12.04
0.232 0.242 1.58 1.11 1.29 2.00 1.80 1.63

          Source: Authors' estimates.
          The first row shows the mean, whereas the second row shows the standard deviation. 
           Outputs and inputs are expressed in natural logs.

Table 1. Basic Statistics at the Sector Level - Continued
(Mean and Standard Deviation)



 

Food Products Beverages Textiles Wearing Apparel Leather Products Footwear Wood
311-312 313 321 322 323 324 331

Blue collar labor 0.0955 0.0788 0.0579 0.0730 0.0471 0.1035 0.1053
(0.0107) (0.0324) (0.0184) (0.0183) (0.0494) (0.0274) (0.0172)

Skilled labor 0.1170 0.2338 0.1878 0.1795 0.2269 0.1451 0.1539
(0.0066) (0.0298) (0.0173) (0.0146) (0.0487) (0.0615) (0.0163)

Capital 0.0941 0.1096 0.0101 0.0597 0.0954 0.2100 0.0018
(0.0333) (0.0577) (0.0320) (0.0565) (0.0902) (0.0522) (0.0495)

Materials 0.5943 0.5748 0.5709 0.5791 0.5254 0.6066 0.5998
(0.0165) (0.0207) (0.0191) (0.0166) (0.0451) (0.0338) (0.0175)

Electricity 0.0880 0.0743 0.2457 0.0812 0.0947 0.0636 0.2021
(0.0176) (0.0612) (0.0412) (0.0230) (0.1287) (0.0293) (0.0707)

Sum of coefficients 0.9888 1.0712 1.0725 0.9725 0.9895 1.1287 1.0630
Chi2 CRS (p-value) 0.786 0.3729 0.0160 0.6458 0.9436 0.0078 0.2562

N observations 24032 1978 6345 5431 918 2509 6064

Furniture Paper Printing and Pub. Chemicals Other chemicals Misc.Petr.and Coal Rubber
332 341 342 351 352 354 355

Blue collar labor 0.0890 -0.0046 0.1861 -0.0408 0.0857 -0.0574 0.1195
(0.0203) (0.0306) (0.0161) (0.0363) (0.0255) (0.0503) (  0.0291)

Skilled labor 0.1116 0.1163 0.1725 0.1676 0.2076 0.1173 0.1767
(0.0265) (0.0314) (0.0180) (0.0367) (0.0271) (0.0611) (0.0346)

Capital 0.0000 0.0100 0.2000 0.0489 0.2405 0.1781 0.1475
(0.1025) (0.0152) (0.0348) (0.0820) (0.0897) (0.1100) (0.0888)

Materials 0.7117 0.6503 0.5186 0.5655 0.5717 0.8139 0.4863
(0.0235) (0.0264) (0.0224) (0.0287) (0.0350) (0.0767) (0.0345)

Electricity 0.2254 0.1900 0.0100 0.0285 0.0000 0.0910 0.0493
(0.0903) (0.0797) (0.0138) (0.0331) (0.0461) (0.1044) (0.0431)

Sum of coefficients 1.1377 0.9620 1.0871 0.7698 1.1056 1.1428 0.9793
Chi2 CRS (p-value) 0.0073 0.6536 0.0316 0.0165 0.2131 0.375 0.8603

N observations 2322 1360 3346 1194 3396 330 1122

Table 2. Production Function Estimates
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Other Plastic Pottery and China Glass Oth.Non Met.Minerals Iron and Steel Non-ferrous metal Fabricated metal
356 361 362 369 371 372 381

Blue collar labor 0.0895 0.2963 0.0947 0.0639 -0.0167 0.0096 0.0820
(0.0140) (0.1092) (0.1016) (0.0247) (0.0464) (0.0484) (0.0125)

Skilled labor 0.1483 0.1877 0.2600 0.1732 0.1983 0.1068 0.1812
(0.0138) (0.0541) (0.0997) (0.0375) (0.0613) (0.0472) (0.0132)

Capital 0.0438 0.0000 0.1976 0.1015 0.9800 0.0422 0.0027
(0.0639) (0.1250) (0.2243) (0.0688) (0.3804) (0.1026) (0.0562)

Materials 0.5905 0.4272 0.5745 0.5685 0.5611 0.6843 0.6153
(0.0157) (0.0673) (0.0901) (0.0226) (0.1110) (0.0351) (0.0149)

Electricity 0.1855 0.4349 0.2780 0.1222 0.0500 0.0000 0.2176
(0.0782) (0.1731) (0.2389) (0.0414) (0.0858) (0.0711) (0.0676)

Sum of coefficients 1.0577 1.3461 1.4048 1.0293 1.7727 0.8429 1.0987
Chi2 CRS (p-value) 0.2486 0.1337 0.1588 0.7013 0.0298 0.2927 0.0487

N observations 4155 279 422 2441 650 651 7572

Non elec. Machinery Elect. Machinery Transport Eq. Prof. and Scient. Eq. Other
382 383 384 385 390

Blue collar labor 0.0470 -0.0067 0.0611 0.1297 0.0016
(0.0180) (0.0427) (0.0247) (0.0792) (0.0439)

Skilled labor 0.1745 0.2563 0.1746 0.1221 0.2507
(0.0193) (0.0463) (0.0365) (0.0612) (0.0484)

Capital 0.0998 0.0000 0.2831 0.0700 0.1887
(0.0827) (0.1953) (0.0135) (0.2380) (0.1098)

Materials 0.5862 0.6844 0.6053 0.5182 0.5226
(0.0205) (0.0307) (0.0293) (0.0611) (0.0423)

Electricity 0.0408 0.2950 0.0815 0.0100 0.1329
(0.0375) (0.1121) (0.0444) (0.1054) (0.0829)

Sum of coefficients 0.9483 1.2291 1.2057 0.8500 1.0965
Chi2 CRS (p-value) 0.5343 0.1781 0.1393 0.5413 0.3912

N observations 3120 1180 1953 374 1051
Source: Author's estimates. Bootstrapped standard errors in parentheses using 250 replications.

Table 2.  Production Function Estimates - Continued



 
 
 
 
 
 

National Manufact.
Accounts ENIA Within Across Entry Exit Within Total Realloc.

1983-1981 -0.107 0.209 -0.019 0.174 0.045 -0.008 -9.1 109.1
1990-1983 0.067 -0.027 -0.027 -0.002 0.036 0.033 100.0 0.0
1997-1990 0.309 0.265 0.181 -0.045 0.152 0.022 68.1 31.9
2001-1997 0.041 0.053 0.119 0.008 0.185 0.259 225.5 -125.5

2001-1980 0.323 0.566 0.019 -0.045 0.724 0.133 3.3 96.7
  Source: Authors' estimates.

% of Total

Table 3. Decomposition of Log TFP Growth - Manufacturing

Incumbents
Total Change Decomposition of TFP Growth in ENIA
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Figure 1. GDP Per Working-Age Person and TFP
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Figure 2a. Weighted Average Productivity at the Industry Level
Low Productivity Growth Industries
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Figure 2b. Weighted Average Productivity at Industry Level
Mid Productivity Growth industries
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Figure 2c. Weighted Average Productivity at Industry Level
High Productivity Growth industries
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Figure 3. TFP Dispersion
All Sectors
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Figure 4. Cumulative Distribution of Productivity
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