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Abstract 
 
 Financial time-series may exhibit breakpoints in unconditional variance due, 
possibly, to institutional changes. Accounting for such shifts is essential to risk 
management, forecasting, and hedging. In this article, we test for the presence of structural 
breaks in volatility by two approaches: the Iterative Cumulative Sum of Squares (ICSS) 
algorithm and wavelet analysis. We present a series of examples in which we compare both 
methods. Specifically, we look at the effect of the outbreak of the Asian crisis and the 
terrorist attacks of September 11, 2001 on Emerging Asia, Europe, Latin America and 
North America’s stock markets. In addition, we focus on the behavior of interest rates in 
Chile after the Central Bank switched its monetary policy interest rate from an inflation-
indexed to a nominal target in August 2001.  
 

Our estimation results show that the number of shifts detected by the two methods is 
substantially reduced when filtering out the data for both conditional heteroskedasticity and 
serial correlation.  
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I Introduction 
 
 To date, there is an extensive literature on the behavior of volatility of assets returns. 
Indeed, the GARCH model and numerous variations of it have been fitted to different 
financial time series around the world to account for the existence of conditional 
heteroskedasticity (see, for instance, the survey by Poon and Granger, 2003). However, less 
attention has been paid to the detection of multiple shifts in unconditional variance over 
time. For example, Lamoureux and Lastrapes (1990) conclude that persistence in variance 
may be overstated by not accounting for deterministic structural breakpoints in the variance 
model.  
 
 A relatively recent approach to testing for volatility shifts is Inclan and Tiao 
(1994)’s Iterative Cumulative Sums of Squares (ICSS) algorithm. This algorithm allows for 
detecting multiple breakpoints in variance in a time series. Aggarwal, Inclan and Leal 
(1999) present an application of this procedure for emerging markets over 1985-1995. They 
conclude that most events leading to volatility shifts tended to be local (e.g., the Mexican 
peso crisis, periods of hyperinflation in Latin America), and that the only global event over 
the sample that affected several emerging markets was the October 1987 crash.  
 

However, recent literature has shown that the ICSS algorithm tends to overstate the 
number of actual structural breaks in variance. Specifically, Bacmann and Dubois (2002) 
point out that the behavior of the ICSS algorithm is questionable under the presence of 
conditional heteroskedasticity. They show that one way to circumvent this problem is by 
filtering the return series by a GARCH (1,1) model, and applying the ICSS algorithm to the 
standardized residuals. Bacmann and Dubois conclude that structural breaks in 
unconditional variance are less frequent than it was shown previously. 
 

An alternative approach to testing for homogeneity of variance is wavelet analysis. 
Wavelet analysis is a refinement of Fourier analysis that was developed in the late 1980’s, 
and which offers a powerful methodology for processing signals, images, and other types of 
data. In particular, the discrete wavelet transform allows for the decomposition of time 
series data into orthogonal components with different frequencies. In finance, potential 
applications of wavelet methods are quantification of spillovers between stock markets at 
different time horizons, and testing for the presence of structural breaks in volatility in 
detailed and smooth components of a time series.  
 
 Recent applications of wavelets in economics and finance are Ramsey and Lampart 
(1998), Norsworthy, Li and Gorener (2000), Lee (2001a, 2001b), and Gencay, Whitcher, 
and Selcuk (2002). Ramsey and Lampart (1998) study the permanent income hypothesis, 
and conclude that the time-scale decomposition is very important for analyzing economic 
relationships. Norsworthy, Li and Gorener (2000) and Gencay, Whitcher, and Selcuk 
(2002) apply wavelet analysis to estimate the systematic risk of an asset (beta). Lee (2001a) 
studies the interaction between the U.S. and the South Korean stock markets. He finds 
evidence of price and volatility spillover effects from the U.S. stock market to the Korean 
stock market, but not vice versa. In turn Lee (2001b) illustrates the use of wavelets for 
seasonality filtering of time-series data. 
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 This paper is organized as follows. Section II gives a brief background on wavelet 
analysis. Section III focuses on detection of breakpoints in volatility by the ICSS algorithm 
and wavelet methods for a sample of four stock indices (Emerging Asia, Europe, Latin 
America, and North America), and interest rates series paid on deposits by Chilean banks 
(nominal and inflation-indexed). We test for variance homogeneity in the original series, 
and in the series filtered out for both conditional heteroskedasticity and serial correlation. 
Section IV presents our main conclusions.  
 
 The contribution of this article is twofold. First, it provides new evidence that 
reinforces the importance of controlling for both conditional heteroskedasticity and serial 
correlation prior to testing for variance homogeneity. Second, it makes a parallel between 
the ICSS algorithm and wavelet analysis, showing that the latter tends to be more robust. 
To our knowledge, no one has yet conducted a similar study.  
 
II Wavelet Analysis in a Nutshell 
 
 Wavelets or short waves are similar to sine and cosine functions in that they also 
oscillates about zero. However, as its name indicates, oscillations of a wavelet fade away 
around zero, and the function is localized in time or space.2 In wavelet analysis, a signal 
(i.e., a sequence of numerical measurements) is represented as a linear combination of 
wavelet functions.  
 
 Unlike Fourier series, wavelets are suitable building-block functions for signals 
whose features change over time, and for non-smooth signals. A wavelet allows for 
decomposing a signal into multi-resolution components: fine and coarse resolution 
components.  
 
 There are father wavelets φ and mother wavelets ψ such that 
 
 ∫ =φ 1dt)t(   ∫ =ψ 0dt)t(        (1) 
 
 Father wavelets are good at representing the smooth and low-frequency parts of a 
signal, whereas mother wavelets are good at representing the detailed and high-frequency 
parts of a signal. The most commonly used wavelets are the orthogonal ones (i.e., haar, 
daublets, symmelets, and coiflets). In particular, the orthogonal wavelet series 
approximation to a continuous signal f(t) is given by 
 
 )t(d...)t(d)t(d)t(s)t(f k,1

k
k,1k,1J

k
k,1Jk,J

k
k,Jk,J

k
k,J ψ++ψ+ψ+φ≈ ∑∑∑∑ −−  (2) 

 
where J is the number of multi-resolution components or scales, and k ranges from 1 to the 
number of coefficients in the corresponding component. The coefficients sJ,k, dJ,k,..., d1,k are 
the wavelet transform coefficients, whereas the functions φj,k(t) and ψj,k(t) are the 
approximating wavelet functions. These functions are generated from φ and ψ as follows 

                                                 
2 Mathematically, a function ϖ(.) defined over the entire real axis is called a wavelet if ϖ(t)→0 as t→±∞.  
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 The wavelet coefficients can be approximated by the following integrals 
 
 ∫ φ≈ dt)t(f)t(s k,Jk,J   ∫ ψ≈ dt)t(f)t(d k,jk,j , j=1, 2,..., J   (4) 
 
 These coefficients are a measure of the contribution of the corresponding wavelet 
function to the total signal. On the other hand, the approximating wavelet functions φj,k(t) 
and ψj,k(t) are scaled and translated versions of φ and ψ. As equation (3) indicates, the scale 
or dilation factor is 2j, whereas the translation or location parameter is 2jk. As j gets larger, 
so does the scale factor 2j, and the functions φj,k(t) and ψj,k(t) get shorter and more spread 
out. In other words, 2j is a measure of the width of the functions φj,k(t) and ψj,k(t). Likewise, 
as j increases, the translation step gets correspondingly larger in order to match the scale 
parameter 2j.  
 
 Applications of wavelet analysis commonly make use of a discrete wavelet 
transform (DWT). The DWT calculates the coefficients of the approximation in (2) for a 
discrete signal of final extent, f1, f2,.., fn. That is, it maps the vector f=(f1, f2,…,fn)′ to a 
vector ω of n wavelet coefficients that contains sJ,k and dj,k, j=1,2,…, J. The sJ,k are called 
the smooth coefficients and the dj,k are called the detail coefficients. Intuitively, the smooth 
coefficients represent the underlying smooth behavior of the data at the coarse scale 2J, 
whereas the detail coefficients provide the coarse scale deviations from it.  
 
 When the length of the data n is divisible by 2J, there are n/2 coefficients d1,k at the 
finest scale 21=2. At the next finest scale, there are n/22 coefficients d2,k. Similarly, at the 
coarsest scale, there are n/2J dJ,k coefficients and n/2J sJ,k coefficients. Altogether, there are 
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 coefficients. The number of coefficients at a given scale is related to the 

width of the wavelet function. For instance, at the finest scale, it takes n/2 terms for the 
functions ψ1,k(t) to cover the interval 1≤t≤n.  
 
 The wavelet coefficients are ordered from coarse scales to fine scales in the vector 
ω. If n is divisible by 2J, ω will be given by 
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 Each of the sets of coefficients sJ, dJ,…,d1 is called a crystal. 
 
 Expression (2) can be rewritten as  
 
 f(t) ≈ SJ(t)+DJ(t)+DJ–1(t)+...+D1(t)       (6) 
 
where  
 
 )t(s)t(S k,J

k
k,JJ φ=∑         (7a) 

 )t(d)t(D k,J
k

k,jJ ψ=∑        (7b) 

 
are denominated the smooth signal and the detail signals, respectively. 
 
 The terms in expression (6) represent a decomposition of the signal into orthogonal 
signal components SJ(t), DJ(t), DJ–1(t), ...,D1(t) at different scales. These terms are 
components of the signal at different resolutions. That is why the approximation in (6) is 
called a multi-resolution decomposition (MRD).  
 
III Data and Estimation Results 
 
3.1 Description of the Data 
 
 We work with four stock indices and four interest rates series. The stock indices are 
taken from Morgan Stanley: Emerging Asia (China, India, Indonesia, Korea, Malaysia, 
Pakistan, Philippines, Taiwan, and Thailand), Europe (Austria, Belgium, Denmark, 
Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Norway, 
Portugal, Spain, Sweden, and the United Kingdom), Latin America (Argentina, Brazil, 
Chile, Colombia, Mexico, Peru, and Venezuela), and North America (Canada and the 
United States). All indices are free-float adjusted by market capitalization, and are 
expressed in U.S. dollars. Index values are measured at closing time. The interest rates 
series correspond with interest rates paid on deposits for 30-day and 60 day maturities 
(nominal), and 90-day and 180-day maturities (inflation indexed). The sample period is 
1997-2002, and the data are measured on a daily frequency. Descriptive statistics are given 
in Table 1.  

[Table 1] 
 

The energy concentration function for a vector x=(x1, x2, …, xn)′ is defined by 
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where x(i) is the ith-largest absolute value in x. That is, the energy in a given crystal is 
calculated as the sum of squares of all of its elements over the sum of squares of all 
observations in the original time series. One appealing characteristic of the DWT is that it is 
an energy preserving transform. This means that the energy in all the DWT coefficients 
equals the energy in the original time series.  
 
 For our data, the coefficients at the two finest scales 21 and 22 (i.e., d1 and d2) 
concentrate in all cases over 60 percent of the energy. For instance, the daily return on 
North America and the daily change of the 60-day interest rate concentrate 76.4 and 91.1 
percent of energy at scales 1 and 2, respectively. This is depicted in Figure 1, where we 
present a multi-resolution decomposition for each series. (Computations were carried out 
with S+Wavelets 2.0). At each scale, the corresponding component is constructed 
according to equations (7a) and (7b). Most short-term fluctuations are observed in crystals 
D1 and D2, and some in the third (i.e., 8-day horizon). Meanwhile, medium-term 
fluctuations are captured at the coarser scales (i.e., within 16 and 64 days).  
 

[Figure 1] 
 
3.2 Breakpoints in Volatility 
 
 In this section, we focus on the detection of permanent shifts in volatility. We 
compare wavelet analysis with Inclan and Tiao (1994)’s Iterative Cumulative Sum of 
Squares (ICSS) algorithm. For the stock indices, we concentrate on two global events: the 
outbreak of the Asian crisis in 1997 and the terrorist attacks of September 11, 2001. For 
Chile’s interest rates, we concentrate on a domestic event triggered by a change in 
monetary policy conduction in August 2001. Specifically, the sharp decrease in inflation 
over the last decade—from 26 percent in 1990 to 4 percent in 2001—led the Central Bank 
of Chile to switched its monetary policy interest rate from an inflation-indexed to a nominal 
target.  
 
 There is evidence in the literature that the ICSS algorithm tends to overestimate the 
number of breakpoints, due to the fact that the assumption of independence in time-series 
data is usually violated. In particular, Bacmann and Dubois (2002) point out that the 
behavior of the ICSS algorithm is questionable under the presence of conditional 
heteroskedasticity. They show that one way to circumvent this problem is by filtering the 
return series by a GARCH (1,1) model, and applying the ICSS algorithm to the 
standardized residuals. By applying this procedure (and an alternative one they propose) to 
stock market indexes in ten emerging markets, Bacmann and Dubois obtain results that 
differ to great extent from those in Aggarwal, Inclan and Leal (1999). They conclude that 
structural breaks in unconditional variance are less frequent than it was shown previously. 
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 Based on this evidence, we test for volatility shifts before and after filtering the data 
for conditional heteroskedascity and serial correlation. As shown below, the number of 
shifts detected by the ICSS algorithm and wavelets methods is substantially reduced when 
the data is filtered.  
 
 The next two sections briefly describe the wavelet variance analysis and the ICSS 
algorithm.  
 
3.2.1 Wavelet Variance Analysis 
 
 Wavelet variance analysis consists in partitioning the variance of a time series into 
pieces that are associated to different time scales. It tells us what scales are important 
contributors to the overall variability of a series (see Percival and Walden, 2000). In 
particular, let x1, x2,..., xn be a time series of interest, which is assumed to be a realization of 
a stationary process with variance 2

Xσ . If )( j
2
X τυ  denotes the wavelet variance for scale 

τj≡2j−1, then the following relationship holds:  
 

 )( j
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=

        (9) 

 
This relationship is analogous to that between the variance of a stationary process and its 
spectral density function (SDF): 
 

 df)f(S
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X ∫

−
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where SX(f) is the SDF at the frequency f ∈ [–1/2, 1/2].  
 
 The SDF for a stationary process decomposes the variance across different 
frequencies, whereas the wavelet variance decomposes it across different scales. Given that 
the scale τj can be related to range of frequencies in the interval [1/2j, 1/2j–1], the wavelet 
variance usually leads to a more succinct decomposition. Moreover, unlike the SDF, the 
square root of the wavelet variance is expressed in the same units as the original data.  
 
 Another advantage of the wavelet variance is that it replaces the sample variance 
with a sequence of variances over given scales. That is, it offers a scale-by-scale 
decomposition of variability, which makes it possible to analyze a process that exhibits 
fluctuations over a range of different scales.  
 
 Let j

j 2/nn =′  be the number of discrete wavelet transform (DWT) coefficients at 

level j, where n is the sample size, and )21)(2L(L j
j

−−−≡′  be the number of DWT 
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boundary coefficients3 at level j (provided that jj Ln ′>′ ), where L is the width of the 
wavelet filter4. An unbiased estimator of the wavelet variance is defined as 
 

 ∑
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 Given that the DWT decorrelates the data, the non-boundary wavelet coefficients in 
a given level (dj) are zero-mean Gaussian white noise process. For a homogeneous 
distribution of dj,t, there is an expected linear increase in the cumulative energy as a 
function of time. The so-called D-statistic denotes the maximum deviation of dj,t from a 
hypothetical linear cumulative energy trend. The D-statistic is compared to the critical 
value of the distribution of D, for a given significance level, under the null hypothesis of 
variance homogeneity.  
 
3.2.2 The ICSS Algorithm 
 

The idea behind the Inclan and Tiao’s ICSS algorithm can be summarized as 
follows. A time series of interest has a stationary unconditional variance over an initial time 
period until a sudden break takes place. The unconditional variance is then stationary until 
the next sudden change occurs. This process repeats through time, giving a time series of 
observations with a number of M breakpoints in the unconditional variance in n 
observations: 
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 In order to estimate the number of changes and the point in time of variance shifts, a 

cumulative sum of square residuals is used, ∑
=

ε=
k

1t

2
tkC , k=1, 2, .., n, where {εt} is a series 

of uncorrelated random variables with zero mean and unconditional variance 2
tσ , as in (12). 

Inclan and Tiao define the statistic: 
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3 Boundary coefficients are those that are formed by combining together some values from the beginning of 
the sequence of scaling coefficients with some values from the end.  
4 In practical applications, we deal with sequences of values (i.e., time series) rather than functions defined 
over the entire real axis. Therefore, instead of using actual wavelets, we work with short sequences of values 
named wavelet filters. The number of values in the sequence is called the width of the wavelet filter, and it is 
denoted by L.  
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 If there are no changes in variance over the whole sample period, Dk will oscillate 
around zero. Otherwise, if there are one or more shifts in variance, Dk will departure from 
zero. The ICSS algorithm systematically looks for breaks in variance at different points in 
the series. A full description of the algorithm is given in Inclan and Tiao’s paper.  
 
3.2.3 The Two Approaches Compared 
 
 We first applied the ICSS algorithm to the four stock returns series over 1997-2002, 
and to the interest rates series over 2000-April 2002. Figures 2 and 3 show the evolution of 
each return series (first difference, in the case of interest rates) along with ±3 standard 
deviations. A discontinuity in the dotted lines indicates the presence of a volatility 
breakpoint.  

[Figures 2 and 3] 
 
 For Emerging Asia, the ICSS algorithm detects breakpoints in August 1997, 
October 1997, February 1998, and October 1998. For Latin America, breakpoints are found 
for October 1997, October 1998, February 1999, and June 2000. For North America, 
breakpoints took place in October 1997, October 1998, May 2002, and October 2002. 
Finally, for Europe, breakpoints are found in October 1997, April 1998, October 1998, 
January 2000, September 2001, and October 2002. Only in this latter case, does the ICSS 
algorithm detect a permanent shift in volatility around September 11, 2001. 
 
 For interest rates, the ICSS algorithm detects breakpoints in variance in the 30-day 
series in February 2001, June 2001, and August 2001; in May 2001 and August 2001 for 
the 60-day series; in March 2000, May 2000, August 2000, March 2001, April 2001, July 
2001, September 2001, October 2001, February 2002, and March 2002 for the 90-day rate; 
and, in May 2000, August 2000, March 2001, and September 2001 for the 180-day rate.  
 
 In order to compare the ICSS algorithm with wavelet analysis, we took as a 
benchmark the dates of breakpoints detected by the ICSS algorithm, and tested whether 
wavelet analysis also found breakpoints around the same time periods. In particular, for the 
stock indices, we focused on 1997-1998, 1999-2000, and 2001-2002. For interest rates, we 
concentrated on 2000-1/2001 and 2/2001-4/2002. Tables 2 and 3 present our results.  
 

In the case of Emerging Asia, both procedures detect volatility shifts during 1997-
1998, but none in 1999-2002. In particular, the wavelet variance test finds breakpoints over 
1997-1998 at the finest scales (d1, d2, and d3) but not at the coarser ones (d4, d5, and d6). 
For North America, the ICSS fails to detect breakpoints between 1999 and 2001, whereas 
wavelet analysis finds some evidence against the null hypothesis of variance homogeneity 
in that period—in, particular at scales 1 and 6. For 1999-2002, the evidence against the null 
hypothesis is mixed, according to wavelet analysis: breakpoints are detected at scale 1 at all 
significance levels, and at scales 2 and 3 at the 10 percent and 5 percent of significance 
level, respectively.  
 
 Finally, for Europe, for 1997-1998, both tests find evidence against the null 
hypothesis. However, unlike the ICSS algorithm, the wavelet variance test does not find 
any breakpoints in 2000. Regarding 2001, the latter test finds shifts only at scale 1 at all 
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significance levels, and at the 10 percent level at scale 2. No breakpoints are found at 
higher scales of the data. When taking 2001-2002, the null hypothesis of homogeneity is 
rejected, at all significance levels, at scales 1, 2, and 3. This suggests that the extra year of 
data (2002) adds some variance instability, as detected by the ICSS algorithm. 
 

[Table 2] 
 
 Regarding interest rates, wavelet analysis finds breakpoints in both periods for the 
30-day, 90-day, and 180-day interest rates, but none for the 60-day interest rate in the first 
period. In general, most violations of variance homogeneity are observed in the second 
period, in which the change in monetary policy occurred. For instance, variance 
homogeneity is rejected at all significance levels at the first four scales of the 30-day 
interest rate, and at the first three scales of the 60-day interest rate. Overall, the periods of 
breakpoints coincide with those detected by the ICSS algorithm. The exception is the 30-
day interest rate series, for which the ICSS algorithm does not find any shifts in variance 
prior to February 2001.  

[Table 3] 
 
 The next step was to remove serial correlation and conditional heteroskedasticity 
from the series by a GARCH(1,1) model, in which the mean equation includes one lag of 
the dependent variable. Surprisingly, this time the ICSS algorithm did not find any 
volatility breakpoints over 1997-2002 in any of the stock return series. Therefore, the 
presence of conditional heteroskedascity would be driving the results reported in Table 4 
for the most part. (In general, serial correlation in daily returns is low). Regarding interest 
rates, the ICSS algorithm still detects some variance shifts: January 2001 and April 2001 
for the 30-day interest rate, August 2001 for the 60-day interest rate, January 2000 and 
March 2001 for the 90-day interest rate. For the 180-day interest rate, however, no breaks 
are found. It is interesting to see that for the 90-day interest rate, the number of breakpoints 
detected is substantially reduced. This again suggests that conditional heteroskedasticity 
played an important role in our previous conclusions.  
 
 With respect to wavelet analysis, some evidence against the null hypothesis of 
variance homogeneity is found in three indices for 1997-1998. Specifically, the null 
hypothesis is rejected for Europe at scale 2 at the 10 percent significance level, for Latin 
America at scales 1, 2, 5 and 6 at the 10 percent significance level, and for North America 
at scale 4 at the 5 percent significance level. In other words, the Asian crisis would have 
caused variance shifts elsewhere, after controlling for conditional heteroskedasticity. Over 
1999-2002, no breaks are found in any filtered series at any scale (Table 4). 
 

[Table 4] 
 
 Figure 4 illustrates the turbulence experienced by North America over June-
September 1998. The left-hand side panel depicts crystal D4—the component that would 
explain the violation of variance homogeneity over 1997-1998––, whereas the right-hand 
side panel shows the return series. The 95-percent out-of-sample value at risk was 
computed by fitting a GARCH (1,1) model to each series over January 1997-May 1998. As 
the right-hand shows, the accumulative actual loss on a $10,000 portfolio invested on the 
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North America index exceeds the 95-percent value at risk for about the first forty 
observations (June and mid-July).  

[Figure 4] 
 
 Regarding interest rates, breakpoints are still detected by the wavelet variance test 
after controlling for conditional heteroskedasticity and serial correlation (Table 5). In 
particular, there is evidence, at the 5 percent significance level, of variance shifts at scale 1 
of the 30-day and 60-day interest rates over February 2001-April 2002. However, variance 
homogeneity is never rejected at any scale for the 90-day and 180-interest rates over the 
same period. That is to say, switching from an inflation-linked to a nominal monetary 
policy interest rate would have affected only the volatility of short nominal interest rates, 
according to this method.  
 

[Table 5] 
 
 An alternative way to test for structural stability is by using a Wald test of the sort in 
Hamilton (1994, chapter 14). In particular, if n is the sample size, and n0 is a known 
breakpoint, a Wald test of the null hypothesis that θ1=θ2, is given by 
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where π≡n0/n, q is the dimension of both θ1 and θ2, 
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−
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 We applied this test to crystal D1 of the first difference of the 30-day and the 60-day 
interest rates. For that purpose, we fitted a GARCH(1,1) model to the D1 series for January 
2000-January 2001, and a second model for February 2001-April 2002. The statistic in (14) 
was then computed in each case. For both series, we rejected the null hypothesis of stability 
of the parameter models. In particular, for both series, we found that the long-run daily 
volatility decreased for the second period: from 0.77 to 0.61 percent points per day for the 
30-day interest rates, and from 0.33 to 0.25 percent points per day for the 60-day interest 
rates. As documented by Morandé (2002), one effect of nominalization was to reduce the 
volatility of nominal interest rates vis-à-vis inflation-indexed interest rates.  
 
IV Conclusions 
 

In this article, we tested for the presence of structural breaks in volatility by two 
approaches: the Iterative Cumulative Sum of Squares (ICSS) algorithm and wavelet 
analysis. Specifically, we looked at the effect of the outbreak of the Asian crisis and the 
terrorist attacks of September 11, 2001 on Emerging Asia, Europe, Latin America and 
North America’s stock markets volatility. In addition, we focused on the behavior of 
interest rates in Chile after the Central Bank changed its monetary policy interest rate from 
an inflation-indexed to a nominal target in August 2001.  
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Our estimation results show that the number of shifts detected by the two methods is 
substantially reduced by filtering out the data for both conditional heteroskedasticity and 
serial correlation. In particular, for the filtered stock data, the ICSS algorithm did not find 
any volatility shifts over 1997-2002, whereas wavelet analysis found evidence of volatility 
breakpoints at some given scales of the data only for 1997-1998 (Asian crisis). For interest 
rates, both methods detect breakpoints in volatility for the filtered first difference of the 30-
day and 60-day series over February 2001-April 2002 (nominalization of the monetary 
policy interest rate). A Wald test for parameter stability reinforces this evidence for interest 
rates.  
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Table 1 Descriptive Statistics  

 
(a) Stock Indices: January 1997-December 2002 

 
 Emerging Asia Europe Latin America North America 

Observations 1,555 1,555 1,555 1,555 
Mean –0.001 0.000 0.000 0.000 

Median –0.001 0.001 0.000 0.000 
Std. dev. 0.015 0.012 0.018 0.013 

25%-quantile –0.009 -0.007 –0.009 –0.007 
50%-quantile –0.001 0.001 0.000 0.000 
75%-quantile 0.008 0.007 0.009 0.007 

Minimum –0.075 –0.057 –0.145 –0.069 
Maximum 0.076 0.052 0.131 0.055 
Skewness 0.0 –0.2 –0.4 –0.1 

Excess kurtosis 4.3 3.3 74.7 5.3 
Jarque Bera test 28.0 30.0 518.7 36.0 

P-value 0.00 0.00 0.00 0.00 
 
Notes: (1) Figures are daily and measured in US dollars, and were obtained from Bloomberg. (2) The Latin 
America index includes Argentina, Brazil, Chile, Colombia, Mexico, Peru, and Venezuela; the North America 
index includes Canada and the United States; the Emerging Asia index includes China, India, Indonesia, 
Korea, Malaysia, Pakistan, Philippines, Taiwan, and Thailand; the Europe index includes Austria, Belgium, 
Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, 
Spain, Sweden, and the United Kingdom; (3) The Jarque-Bera test detects whether the probability distribution 
of a series departures from normality.  

 
(b) Interest Rates in Chile: January 1997-April 2002 

 
 30-day rate 60-day rate 90-day rate 180-day rate 

Observations 1,307 1,307 1,312 1,312 
Mean 0.097 0.088 0.063 0.058 

Median 0.088 0.083 0.056 0.056 
Std. Dev. 0.042 0.031 0.027 0.020 

25%-quantile 0.066 0.064 0.049 0.048 
50%-quantile 0.088 0.083 0.056 0.056 
75%-quantile 0.120 0.109 0.074 0.067 

Maximum 0.005 0.030 0.001 0.002 
Minimum 0.370 0.228 0.219 0.150 
Skewness 1.3 0.9 1.3 0.7 

Excess kurtosis 11.6 0.7 21.8 7.4 
Jarque Bera test 427.3 165.5 483.5 150.2 

P-value 0.00 0.00 0.00 0.00 
ADF stat −4.647 

(0.001) 
−3.545 
(0.035) 

−2.956 
(0.145) 

−2.671 
(0.249) 

 
 
Notes: (1) The data are daily and were obtained from Bloomberg. Interest rates are annualized. (2) The lag 
length in the Augmented Dickey-Fuller (ADF) test statistic is determined by the Schwartz information 
criterion. P-values are between parentheses. (3) The Jarque-Bera test detects whether the probability 
distribution of a series departures from normality.  
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Table 2 Volatility shifts test at different time scales: Stock indices 

 
(a) Emerging Asia 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
1997-1998 d1 0.308 0.108 0.120 0.144 F F F 

 d2 0.283 0.151 0.167 0.202 F F F 
 d3 0.290 0.218 0.243 0.295 F F F 
 d4 0.274 0.319 0.355 0.428 T T T 
 d5 0.375 0.503 0.558 0.659 T T T 
 d6 0.702 0.993 0.998 0.999 T T T 

1999-2002 d1 0.055 0.077 0.085 0.101 T T T 
 d2 0.087 0.109 0.121 0.144 T T T 
 d3 0.088 0.152 0.168 0.203 T T T 
 d4 0.127 0.218 0.243 0.295 T T T 
 d5 0.266 0.319 0.355 0.428 T T T 
 d6 0.459 0.503 0.558 0.659 T T T 

 
(b) Europe 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
1997-1998 d1 0.234 0.108 0.120 0.144 F F F 

 d2 0.422 0.151 0.167 0.202 F F F 
 d3 0.218 0.218 0.243 0.295 T T T 
 d4 0.479 0.319 0.355 0.428 F F F 
 d5 0.328 0.503 0.558 0.659 T T T 
 d6 0.767 0.993 0.998 0.999 T T T 

1999-2000 d1 0.074 0.149 0.167 0.200 T T T 
 d2 0.154 0.214 0.239 0.290 T T T 
 d3 0.138 0.319 0.355 0.428 T T T 
 d4 0.419 0.503 0.558 0.659 T T T 
 d5 0.617 0.993 0.998 0.999 T T T 

2001 d1 0.151 0.108 0.120 0.144 F F F 
 d2 0.167 0.151 0.167 0.202 F T T 
 d3 0.171 0.218 0.243 0.295 T T T 
 d4 0.274 0.319 0.355 0.428 T T T 
 d5 0.182 0.503 0.558 0.659 T T T 
 d6 0.966 0.993 0.998 0.999 T T T 

2001-2002 d1 0.328 0.149 0.167 0.200 F F F 
 d2 0.356 0.214 0.239 0.290 F F F 
 d3 0.433 0.319 0.355 0.428 F F F 
 d4 0.433 0.503 0.558 0.659 T T T 
 d5 0.727 0.993 0.998 0.999 T T T 
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(c) Latin America 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
1997-1998 d1 0.283 0.108 0.120 0.144 F F F 

 d2 0.448 0.151 0.167 0.202 F F F 
 d3 0.220 0.218 0.243 0.295 F T T 
 d4 0.539 0.319 0.355 0.428 F F F 
 d5 0.622 0.503 0.558 0.659 F F T 
 d6 0.975 0.993 0.998 0.999 T T T 

1999-2001 d1 0.196 0.088 0.098 0.117 F F F 
 d2 0.142 0.126 0.140 0.167 F F T 
 d3 0.201 0.176 0.195 0.232 F F T 
 d4 0.165 0.256 0.284 0.342 T T T 
 d5 0.402 0.381 0.425 0.505 F T T 
 d6 0.483 0.636 0.703 0.815 T T T 

1999-2002 d1 0.150 0.077 0.085 0.101 F F F 
 d2 0.093 0.109 0.121 0.144 T T T 
 d3 0.182 0.152 0.168 0.203 F F T 
 d4 0.140 0.218 0.243 0.295 T T T 
 d5 0.294 0.319 0.355 0.428 T T T 
 d6 0.277 0.503 0.558 0.659 T T T 

 
 

(d) North America 
 

Period Scale D-statistic Critical Values H0: Homogeneity 
   10% 5% 1% 10% 5% 1% 

1997-1998 d1 0.191 0.108 0.120 0.144 F F F 
 d2 0.258 0.151 0.167 0.202 F F F 
 d3 0.140 0.218 0.243 0.295 T T T 
 d4 0.614 0.319 0.355 0.428 F F F 
 d5 0.275 0.503 0.558 0.659 T T T 
 d6 0.996 0.993 0.998 0.999 F T T 

1999-2001 d1 0.111 0.088 0.098 0.117 F F T 
 d2 0.095 0.126 0.140 0.167 T T T 
 d3 0.129 0.176 0.195 0.232 T T T 
 d4 0.136 0.256 0.284 0.342 T T T 
 d5 0.188 0.381 0.425 0.505 T T T 
 d6 0.714 0.636 0.703 0.815 F F T 

1999-2002 d1 0.158 0.077 0.085 0.101 F F F 
 d2 0.111 0.109 0.121 0.144 F T T 
 d3 0.170 0.152 0.168 0.203 F F T 
 d4 0.153 0.218 0.243 0.295 T T T 
 d5 0.127 0.319 0.355 0.428 T T T 
 d6 0.363 0.503 0.558 0.659 T T T 

 
Note: An Inclan-Tiao approximation is used to compute the critical values for sample sizes N≥128, while a 
Monte Carlo Technique is used for N<128. “T” indicates that we cannot reject the null hypothesis and “F” 
otherwise.  

 



 17

Table 3 Volatility shifts test at different time scales: Interest rates on deposits 
 

(a) 30 days 
 

Period Scale D-statistic Critical Values H0: Homogeneity 
   10% 5% 1% 10% 5% 1% 

2000-Jan 2001 d1 0.099 0.152 0.169 0.203 T T T 
 d2 0.242 0.213 0.236 0.287 F F T 
 d3 0.191 0.315 0.351 0.421 T T T 
 d4 0.574 0.503 0.558 0.659 F F T 
 d5 0.996 0.993 0.998 0.999 F T T 

Feb 2001-Apr 2002 d1 0.223 0.141 0.157 0.188 F F F 
 d2 0.340 0.198 0.220 0.265 F F F 
 d3 0.480 0.291 0.325 0.390 F F F 
 d4 0.757 0.442 0.489 0.586 F F F 
 d5 0.745 0.901 0.948 0.988 T T T 

 
(b) 60 days 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
2000-Jan 2001 d1 0.141 0.152 0.169 0.203 T T T 

 d2 0.155 0.213 0.236 0.287 T T T 
 d3 0.292 0.315 0.351 0.421 T T T 
 d4 0.456 0.503 0.558 0.659 T T T 
 d5 0.891 0.993 0.998 0.999 T T T 

Feb 2001-Apr 2002 d1 0.272 0.141 0.157 0.188 F F F 
 d2 0.343 0.198 0.220 0.265 F F F 
 d3 0.438 0.291 0.325 0.390 F F F 
 d4 0.343 0.442 0.489 0.586 T T T 
 d5 0.665 0.901 0.948 0.988 T T T 

 
(b) 90 days 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
2000-Jan 2001 d1 0.314 0.152 0.169 0.203 F F F 

 d2 0.238 0.213 0.236 0.287 F F T 
 d3 0.378 0.315 0.351 0.421 F F T 
 d4 0.343 0.503 0.558 0.659 T T T 
 d5 0.989 0.993 0.998 0.999 T T T 

Feb 2001-Apr 2002 d1 0.322 0.143 0.158 0.190 F F F 
 d2 0.288 0.200 0.223 0.268 F F F 
 d3 0.323 0.295 0.329 0.394 F T T 
 d4 0.308 0.459 0.508 0.608 T T T 
 d5 0.430 0.901 0.948 0.988 T T T 
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(b) 180 days 
 

Period Scale D-statistic Critical Values H0: Homogeneity 
   10% 5% 1% 10% 5% 1% 

2000-Jan 2001 d1 0.308 0.152 0.169 0.203 F F F 
 d2 0.378 0.213 0.236 0.287 F F F 
 d3 0.86 0.315 0.351 0.421 T T T 
 d4 0.292 0.503 0.558 0.659 T T T 
 d5 0.747 0.993 0.998 0.999 T T T 

Feb 2001-Apr 2002 d1 0.284 0.143 0.158 0.190 F F F 
 d2 0.183 0.200 0.223 0.268 T T T 
 d3 0.264 0.295 0.329 0.394 T T T 
 d4 0.427 0.459 0.508 0.608 T T T 
 d5 0.433 0.901 0.948 0.988 T T T 

 
Note: An Inclan-Tiao approximation is used to compute the critical values for sample sizes N≥128, while a 
Monte Carlo Technique is used for N<128. “T” indicates that we cannot reject the null hypothesis and “F” 
otherwise.  
 

Table 4 Volatility shifts test after controlling for conditional heteroskedasticity: Stock indices 
 

(a) Emerging Asia 
 

Period Scale D-statistic Critical Values H0: Homogeneity 
   10% 5% 1% 10% 5% 1% 

1997-1998 d1 0.044 0.108 0.120 0.144 T T T 
 d2 0.132 0.151 0.167 0.202 T T T 
 d3 0.141 0.218 0.243 0.295 T T T 
 d4 0.112 0.319 0.355 0.428 T T T 
 d5 0.197 0.503 0.558 0.659 T T T 
 d6 0.867 0.993 0.998 0.999 T T T 

1999-2002 d1 0.010 0.077 0.085 0.101 T T T 
 d2 0.061 0.109 0.121 0.144 T T T 
 d3 0.094 0.152 0.168 0.203 T T T 
 d4 0.119 0.218 0.243 0.295 T T T 
 d5 0.266 0.319 0.355 0.428 T T T 
 d6 0.346 0.503 0.558 0.659 T T T 
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(b) Europe 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
1997-1998 d1 0.041 0.108 0.120 0.144 T T T 

 d2 0.151 0.151 0.167 0.202 F T T 
 d3 0.100 0.218 0.243 0.295 T T T 
 d4 0.196 0.319 0.355 0.428 T T T 
 d5 0.317 0.503 0.558 0.659 T T T 
 d6 0.740 0.993 0.998 0.999 T T T 

1999-2000 d1 0.100 0.149 0.167 0.200 T T T 
 d2 0.080 0.214 0.239 0.290 T T T 
 d3 0.109 0.319 0.355 0.428 T T T 
 d4 0.448 0.503 0.558 0.659 T T T 
 d5 0.590 0.993 0.998 0.999 T T T 

2001 d1 0.066 0.108 0.120 0.144 T T T 
 d2 0.052 0.151 0.167 0.202 T T T 
 d3 0.108 0.218 0.243 0.295 T T T 
 d4 0.299 0.319 0.355 0.428 T T T 
 d5 0.186 0.503 0.558 0.659 T T T 
 d6 0.974 0.993 0.998 0.999 T T T 

2001-2002 d1 0.074 0.149 0.167 0.200 T T T 
 d2 0.201 0.214 0.239 0.290 T T T 
 d3 0.157 0.319 0.355 0.428 T T T 
 d4 0.200 0.503 0.558 0.659 T T T 
 d5 0.993 0.993 0.998 0.999 T T T 

 
(c) Latin America 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
1997-1998 d1 0.109 0.108 0.120 0.144 F T T 

 d2 0.155 0.151 0.167 0.202 F T T 
 d3 0.198 0.218 0.243 0.295 T T T 
 d4 0.164 0.319 0.355 0.428 T T T 
 d5 0.545 0.503 0.558 0.659 F T T 
 d6 0.998 0.993 0.998 0.999 F T T 

1999-2001 d1 0.070 0.088 0.098 0.117 T T T 
 d2 0.092 0.126 0.140 0.167 T T T 
 d3 0.115 0.176 0.195 0.232 T T T 
 d4 0.162 0.256 0.284 0.342 T T T 
 d5 0.328 0.381 0.425 0.505 T T T 
 d6 0.475 0.636 0.703 0.815 T T T 

1999-2002 d1 0.052 0.077 0.085 0.101 T T T 
 d2 0.088 0.109 0.121 0.144 T T T 
 d3 0.116 0.152 0.168 0.203 T T T 
 d4 0.114 0.218 0.243 0.295 T T T 
 d5 0.213 0.319 0.355 0.428 T T T 
 d6 0.232 0.503 0.558 0.659 T T T 
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(d) North America 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
1997-1998 d1 0.103 0.108 0.120 0.144 T T T 

 d2 0.066 0.151 0.167 0.202 T T T 
 d3 0.092 0.218 0.243 0.295 T T T 
 d4 0.391 0.319 0.355 0.428 F F T 
 d5 0.316 0.503 0.558 0.659 T T T 
 d6 0.984 0.993 0.998 0.999 T T T 

1999-2001 d1 0.056 0.088 0.098 0.117 T T T 
 d2 0.120 0.126 0.140 0.167 T T T 
 d3 0.125 0.176 0.195 0.232 T T T 
 d4 0.131 0.256 0.284 0.342 T T T 
 d5 0.232 0.381 0.425 0.505 T T T 
 d6 0.598 0.636 0.703 0.815 T T T 

1999-2002 d1 0.058 0.077 0.085 0.101 T T T 
 d2 0.0944 0.109 0.121 0.144 T T T 
 d3 0.088 0.152 0.168 0.203 T T T 
 d4 0.169 0.218 0.243 0.295 T T T 
 d5 0.166 0.319 0.355 0.428 T T T 
 d6 0.295 0.503 0.558 0.659 T T T 

 
Note: An Inclan-Tiao approximation is used to compute the critical values for sample sizes N≥128, while a 
Monte Carlo Technique is used for N<128. “T” indicates that we cannot reject the null hypothesis and “F” 
otherwise.  
 

Table 5 Volatility shifts test after controlling for conditional heteroskedasticity: Interest rates 
 

(a) 30 days 
 

Period Scale D-statistic Critical Values H0: Homogeneity 
   10% 5% 1% 10% 5% 1% 

2000-Jan 2001 d1 0.094 0.152 0.169 0.203 T T T 
 d2 0.194 0.213 0.236 0.287 T T T 
 d3 0.148 0.315 0.351 0.421 T T T 
 d4 0.603 0.503 0.558 0.659 F F T 
 d5 0.999 0.993 0.998 0.999 F F T 

Feb 2001-Apr 2002 d1 0.161 0.141 0.157 0.188 F F T 
 d2 0.155 0.198 0.220 0.265 T T T 
 d3 0.394 0.291 0.325 0.390 F F F 
 d4 0.584 0.442 0.489 0.586 F F T 
 d5 0.708 0.901 0.948 0.988 T T T 
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(b) 60 days 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
2000-Jan 2001 d1 0.079 0.152 0.169 0.203 T T T 

 d2 0.147 0.213 0.236 0.287 T T T 
 d3 0.178 0.315 0.351 0.421 T T T 
 d4 0.488 0.503 0.558 0.659 T T T 
 d5 0.858 0.993 0.998 0.999 T T T 

Feb 2001-Apr 2002 d1 0.158 0.141 0.157 0.188 F F T 
 d2 0.161 0.198 0.220 0.265 T T T 
 d3 0.337 0.291 0.325 0.390 F F T 
 d4 0.230 0.442 0.489 0.586 T T T 
 d5 0.676 0.901 0.948 0.988 T T T 

 
(c) 90 days 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
2000-Jan 2001 d1 0.174 0.152 0.169 0.203 F F T 

 d2 0.143 0.213 0.236 0.287 T T T 
 d3 0.379 0.315 0.351 0.421 F F T 
 d4 0.216 0.503 0.558 0.659 T T T 
 d5 0.972 0.993 0.998 0.999 T T T 

Feb 2001-Apr 2002 d1 0.069 0.143 0.158 0.190 T T T 
 d2 0.128 0.200 0.223 0.268 T T T 
 d3 0.160 0.295 0.329 0.394 T T T 
 d4 0.223 0.459 0.508 0.608 T T T 
 d5 0.470 0.901 0.948 0.988 T T T 

 
(d) 180 days 

 
Period Scale D-statistic Critical Values H0: Homogeneity 

   10% 5% 1% 10% 5% 1% 
2000-Jan 2001 d1 0.153 0.152 0.169 0.203 F T T 

 d2 0.218 0.213 0.236 0.287 F T T 
 d3 0.364 0.315 0.351 0.421 F F T 
 d4 0.270 0.503 0.558 0.659 T T T 
 d5 0.733 0.993 0.998 0.999 T T T 

Feb 2001-Apr 2002 d1 0.135 0.143 0.158 0.190 T T T 
 d2 0.145 0.200 0.223 0.268 T T T 
 d3 0.132 0.295 0.329 0.394 T T T 
 d4 0.358 0.459 0.508 0.608 T T T 
 d5 0.394 0.901 0.948 0.988 T T T 

 
Note: An Inclan-Tiao approximation is used to compute the critical values for sample sizes N≥128, while a 
Monte Carlo Technique is used for N<128. “T” indicates that we cannot reject the null hypothesis and “F” 
otherwise.  
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FIGURES 
 

Figure 1 Multi-resolution Decomposition 
 

(a) Stock Index Returns 
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(b) Daily change in interest rates 
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Note: The wavelet function used in all cases is a symmmlet, s8. The number is related to the width and 
smoothness of the wavelet function. (See Bruce and Gao, 1996). 
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Figure 2 Structural Breaks in Volatility detected by the ICSS algorithm: 1997-2002 

 
(a) Emerging Asia 
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 (b) Europe 

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

3-
Ja

n-
97

3-
Ju

l-9
7

3-
Ja

n-
98

3-
Ju

l-9
8

3-
Ja

n-
99

3-
Ju

l-9
9

3-
Ja

n-
00

3-
Ju

l-0
0

3-
Ja

n-
01

3-
Ju

l-0
1

3-
Ja

n-
02

3-
Ju

l-0
2

R
et

ur
n 

on
 E

ur
op

e 
In

de
x

 



 25

(c) Latin America 
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(d) North America 
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Notes: Dotted lines represent ±3 standard deviations.  
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Figure 3 ICSS Algorithm and Structural Breaks in Volatility of Interest Rates in Chile:  
January 2000-April 2002 
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(b) 
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(c) 

90-day deposit rate
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(d) 
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Note: The data are daily and were obtained from Bloomberg.  
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Figure 4 Out-of-Sample Value at Risk for North America: June-September 1998 
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Note: The out-of sample value at risk is computed by fitting a GARCH(1,1) model to each series for January 
1997-May 1998. The investment is $10,000.  


