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Abstract 
 

Using plant-level data on Chilean manufacturing firms for the 1980-99 period, we 
estimate and characterize disaggregate total factor productivity. We show that 
idiosyncratic productivity shocks are a quantitatively relevant source of the observed 
heterogeneity in the behavior of plants. Both exit and input demand decisions are 
correlated with our estimates of plant level productivity. We then use these estimates 
to study the microeconomic sources of aggregate growth. We decompose productivity 
dynamics into production reallocation and within plant efficiency changes. We find 
that both sources of productivity growth have significantly contributed to efficiency 
gains in Chile during the last two decades. Although reallocation effects are always 
positive, the magnitude of their contribution is larger during periods of negative or low 
growth. Within-plant productivity growth contributes positively only during the 1990s, 
consistently with the existence of a lag between the implementation of major market 
oriented structural reforms -- mostly undertaken during the late 1970s and early 1980s 
-- and their complete effect on the economy. Once reforms were consolidated, 
unbounded within-plants efficiency gains driven by technology adoption and 
innovation occurred. 
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1. Introduction 
 
Increasing availability of micro-level data has allowed the documentation of a 

widely accepted regularity: for high levels of disaggregation and even within the same 
sector and period of time, plants are expanding and contracting, entering the market and 
shutting-down. As a result, a continuous process of creation and destruction of jobs and 
capital at a highly different pace is observed. These regularities have been documented for 
developed and developing economies. Evidence for Chile, reported in Camhi, Engel and 
Micco (1997) and Bergoeing, Hernando and Repetto (2003), is consistent with these 
findings. 1   
 

Several factors have been proposed to account for the observed heterogeneity in 
plant-level outcomes. Some studies stress the role of the uncertainty that surrounds 
production decisions, resulting from either the development and adoption of new 
production techniques, or the distribution and marketing of new products. Also, firms 
experiment with different production processes as they lack full information on the demand 
conditions and cost effectiveness of alternative technologies. Differences in managerial 
skills may be another source of plant-level heterogeneity.  

 
The hypothesis of this paper is that the differences in the behavior of plants are 

explained by plant specific shocks that can be characterized as changes in total factor 
productivity (TFP). We thus focus on idiosyncratic productivity shocks as a determinant for 
the observed plant-level heterogeneity. Consistently with profit maximization behavior, 
plants behave differently, growing or shrinking, creating and destroying jobs and capital, 
staying or leaving the market, as a response to idiosyncratic shocks.2  
 

Using plant-level manufacturing data for Chile during the 1980-1999 period, we 
estimate and characterize disaggregate TFP. The estimates confirm the hypothesis of 
productivity heterogeneity at the micro level and show its relevance as a source of the 
observed behavior of plants. In particular, even within narrowly defined sectors, at any 
period of time there are wide differences in TFP. These TFP estimates behave according to 
expected patterns. In general, bigger, older, and more outward oriented plants are more 
productive. Some of these patterns are strengthened when we control for age, cohort and 
business cycle effects. Moreover, we find that the TFP estimates are a quantitatively 
relevant source of the behavior of plant as they correlate significantly with input demands 
and exit decisions. Specfically, we find that the elasticity of employment to productivity 
ranges between 0.08 and 0.35. Furthermore, we find evidence consistent with fixed 
adjustment costs to investment as the probability of investing is 15.4 percentage points 
larger for plants that experienced productivity shocks in the highest quartile of the TFP 
distribution relative to the lowest quartile. Finally, we find that an increase of one standard 

                                                           
1 See, for the United States, Davis, Haltiwanger, and Schuh (1996) and Doms and Dunne (1998), and for the 
OECD see Ahn (2001). 
2 Salter (1966) provides comprehensive evidence of heterogeneity in 28 industries in the United States during 
the 1924-1950 period. He suggests that the observed heterogeneity in output, employment, prices, costs and 
earnings across plants may be the result of uneven technical change among industries.  
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deviation in productivity reduces on average the shut down probability by 0.76 percentage 
points. 
 

Finally, we study the microeconomic sources of aggregate growth by establishing a 
link between plant-level behavior and aggregate productivity dynamics. The recent Chilean 
experience provides an interesting case to study the sources of growth. During the second 
half of the 1970s and the beginning of the 1980s, several market-oriented reforms were 
implemented in Chile. Most sectors in the economy were homogeneously exposed to 
international trade, companies were privatized, and distortions were eliminated. These 
economic transformations facilitate the adoption of more advanced technologies and more 
efficient production processes, and generated market share reallocations and sectoral 
efficiency gains. Previous studies, however, have only partially analyzed the effect of these 
reforms on aggregate growth: they either exclusively look at aggregate data or they focus 
on periods of time too short to allow these reforms to fully affect the economy. 
Additionally, during the early 1980s the Chilean economy experienced, as most countries in 
Latin America, a deep fall in economic activity, with GDP decreasing almost 20 % during 
the 1982-83 period. Only a decade later the economy recovered its pre-crisis trend value in 
GDP per capita.3 Then, in 1998, after almost 15 years of sustained and stable growth, 
economic activity stagnated.  

 
Thus the plant-level total factor productivities we estimate in this paper comprise 20 

years characterized by several relevant shocks, providing a rich source of information that 
allows us to better understand the link between plant-level behavior and aggregate 
dynamics. We find that both within plant efficiency changes and reallocation effects have 
been relevant for aggregate TFP growth. Over all the sample period reallocation effects are 
positive, indicating that resources are shifted towards more efficient plants. Within-plant 
TFP growth positively correlates with total TFP growth over most of the period. Although 
it is positive on average for the full period, during many subperiods it contributed 
negatively to total productivity growth. The relative importance of these sources of 
productivity gains has varied over time.  

 
The paper is organized as follows. The next section of the paper describes the 

estimation algorithm and the theoretical framework of firm exit behavior that supports it. In 
Section 3 we present the data used in the estimations, we characterize plant-level TFP, and 
we quantify the relevance of idiosyncratic productivity shocks as a source of the observed 
heterogeneity in plant outcomes. Section 4 uses the estimates of plant-level TFP to study 
the contribution of reallocation and within plant efficiency changes into aggregate 
productivity dynamics. The final section concludes. 
 
 

                                                           
3 See Bergoeing et al. (2002). 



2. A Theory and Estimation Procedure of Productivity Dynamics 
 

As reported by Camhi, Engel and Micco (1997) and Bergoeing, Hernando, and 
Repetto (2003), and consistent with the international evidence, Chilean manufacturing data 
show substantial heterogeneity at the plant level. Even within narrowly defined sectors, at 
any period of time the Chilean economy is characterized by large and persistent differences 
in factor-input usage and output across plants. Idiosyncratic productivity shocks are one 
possible explanation for this heterogeneous behavior. In this section we describe a theory of  
plant exit and input demand based on plant specific productivity shocks, and the algorithm 
to estimate plant-level TFP based on this theory, developed by Olley and Pakes (1996). 

 
 

A Model of Plant Heterogeneity and Exit Decisions 
 
Assume the economy is populated by a continuum of heterogeneous firms, each one 

with its own level of productivity.4 In every period, given factor prices and the market 
structure, the manager of each firm decides whether to quit production and exit, or to stay 
in business. The exit decision is irreversible. The manager’s decisions are made after facing 
an idiosyncratic productivity shock that is a random draw from an exogenous Markov 
process. If the firm continues in operation, the manager purchases variable factors and 
chooses a level of investment. If she decides to exit, the plant is worth a sell-off value of Ψ. 
Exit decisions are based on profit maximization so as to maximize expected discounted net 
cash flows. The firm’s problem thus is 
  
  

 
where c(it) represents the cost of investment, β the firm’s discount factor, Et the expectation 
operator conditional on all information known at time t, and Vt the value function at period 
t. The profit function of the firm is represented by πt(ωt , kt), which depends on the current 
value of the state variables, capital (kt) and productivity (ωt). The function is indexed by 
time to account for changing market structures and factor and output prices. The law of 
motion for capital is given by  

 
ttt ikk +−=+ )1(1 δ  

 
where it is current period’s gross investment. 

 
Conditional on capital stock, kt, equilibrium exit decisions are given by a cut-off 

level of productivity ω*
t(kt), as shown by Ericson and Pakes (1995). If ωt ≥ ω*

t(kt), the firm 
stays in business, and if ωt < ω*

t(kt), the firm exits. This cut-off is decreasing in kt if the 
difference between the expected discount value of profits and the sell-off value depends 
                                                           
4 In this paper we refer to firms and plants as equivalent economic units, although our data set collects 
information on plants and not on firms. 
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positively on capital; i.e. larger firms lose more if they choose to quit. In other words, a 
larger capital stock allows firms to stay in business even if current productivity is relatively 
low. Finally, if the plants stays, the investment demand is given by it = it(ωt, kt). Pakes 
(1994) shows that for any capital stock, if investment is strictly positive, the investment 
function it is strictly increasing in ωt. The monotonicity of the cut-off and investment 
demand functions are key ingredients for the OP algorithm that is outlined in the next 
subsection, as they will be used as proxy for the unobserved productivity shocks. 
 
 
The Olley-Pakes Estimation Strategy 
 

The first step in constructing series of TFP is estimating a production function. 
Within this theoretical framework, the empirical estimation of production functions is 
problematic because productivity, a state variable in the firm's decision problem, is not 
observed by the econometrician. Two biases in OLS estimation of the production functions 
are introduced. First, there is a simultaneity problem, as factor demands are correlated with 
the unobserved productivity term. Specifically, if firms with higher productivity are more 
likely to purchase inputs, then OLS estimates of the corresponding coefficients are biased 
upwards. Second, there is a selection problem since conditional on survival the 
econometrician only observes plants with productivity greater than the cut-off. The 
expectation of productivity will depend negatively on capital since firms with a larger 
capital stock can afford to survive with a lower productivity level. Thus, the capital 
coefficients are biased downwards. 

 
 Fixed effects regressions do not solve the simultaneity problem since they require 
the productivity term to be constant over time.5 Given the length of the period considered 
and since structural reforms were undertaken during the period studied, it is highly unlikely 
that productivity remained constant. As a matter of fact, the results in Pavcnik (2002) for 
the 1979-86 period suggest that fixed effects regressions do not fully control for the 
endogeneity problem, and thus that plant-level productivity is not constant over time. 
Similarly, balancing the panel of firms does not solve the selection problem, since firms 
that remain in the panel are firms that survived. To circumvent these problems we use a 
general estimation procedure proposed by Olley and Pakes (OP) and modified by 
Levinsohn and Petrin (LP).6       
 

Let the production function of firm i at time t be 
 

itititkitu
uits

sit klly µωββββ +++++= 0  
 
where yit is log value added, ls

it is the log of skilled labor input, lu
it is the log of unskilled 

labor input, kit is the log of the plant’s capital stock, ωit is the log of plant-specific 
productivity, and µit is a mean zero error that accounts for measurement error and for 
unexpected productivity shocks that do not affect the choice of inputs. 

                                                           
5 See Griliches and Mairesse (1995) for a thorough analysis of the simultaneity problem. 
6 See Olley and Pakes (1996) and Levinsohn and Petrin (1999). 
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The estimation procedure developed by OP is built in three steps. The procedure 
relies on the assumption that next period's productivity depends on current period's 
productivity, which in turn can be written in terms of observables.  In the first step, a 
consistent estimate of the coefficients on variable inputs, skilled and unskilled labor, is 
obtained. This is achieved by controlling for the unobserved shock by inverting the 
investment function and approximating ωit by a polynomial expansion in investment and 
capital. The second step consists of the estimation of the exit probability of any given plant 
using polynomial expansions in capital and investment. This estimated probability is used 
in the third step to control for the cut-off, and thus to correct for the selection problem. The 
final step identifies the coefficient on capital after substituting the parameters estimated in 
the previous steps into the production function. 

 
Several assumptions of the OP procedure deserve further attention. First, the 

investment demand function must be inverted in order to recover productivity as a function 
of observables. This is technically possible only if investment is strictly positive. However, 
a large number of plants in our data set do not invest due, perhaps, to the presence of fixed 
adjustment costs to investment. To use the OP algorithm these observations must be 
excluded since investment is no longer useful in controlling for the correlation between 
productivity and variable inputs. In our data set, the procedure thus requires the exclusion 
of about 40% of the available observations. Nevertheless, Levinsohn and Petrin (1999) 
have proposed to replace investment for intermediate inputs as a control for unobservable 
productivity shocks. If intermediate inputs can be adjusted without cost and if they respond 
to productivity shocks, they can be used instead of investment. We follow LP and use 
electricity as a control. Almost all our plant/year observations have positive levels of 
electricity. Furthermore, electricity cannot be stored by firms, so its current demand must 
be correlated with current productivity. Nevertheless, it is worth emphasizing that the use 
of electricity as a proxy for productivity requires the use of value added as the measure of 
output.7 Since value added does not include the contribution of materials, intermediate 
inputs such as electricity and energy can then be used as proxies for productivity. However, 
if materials are mismeasured, part of the contribution of intermediate inputs remains in 
value added. If so, the method yields biased estimates of all coefficients, as the 
measurement error and the productivity correction term are correlated. 

 
Second, Olley and Pakes (1995) have shown that kernel estimators of g provide 

consistent and asymptotically normal estimators of the production function coefficients. No 
proof is available for series estimators of g. In this paper we use polynomial expansions, so 
we provide bootstrap standard errors to account for the fact that we do not have a well-
defined limiting distribution of the estimators.  

 
Third, the theoretical model assumes, as it is standard in the literature, that period t 

investment becomes available for production with a lag. So, if firms observe the 
productivity shock before they choose a level of investment, then current period’s capital is 
not correlated directly with productivity. Previous papers using Chilean manufacturing data 
have used the capital stock series constructed by Liu (1993). This series assumes that 

                                                           
7 For a discussion on the meaning of the production function at the firm level using value added, see Basu and 
Fernald (1995). 
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investment becomes productive immediately, so current period’s capital stock is effectively 
correlated with the productivity shock. To correct for this problem, LP change the 
assumptions about the timing of firm’s actions so investment in t+1 can be used as a proxy 
of productivity in t. We take the alternative route: we redefined capital so as to make it 
consistent with OP’s modeling assumptions, and reconstructed the series.  

 
Fourth, the unit of analysis of the theoretical model is the firm. However, we 

observe plants and not firms in our data set. In other words, we are unable to distinguish 
single-plant firms from multi-plant firms.8 

 
Finally, the algorithm assumes that the only state variable that affects the firm’s 

decisions, but that is unobserved by the econometrician, is the productivity shock. Without 
this assumption, the investment demand cannot be inverted in order to write productivity as 
a function of observables. If investment depends on other unobservables, the one-to-one 
correspondence between productivity and investment, holding fixed the capital stock, no 
longer holds. Using a Montecarlo experiment, Syverson (2001) has shown that if the choice 
of inputs depends upon the unobserved expectation of variables such as the state of demand 
or input prices, OP’s methodology yields biased estimates of the coefficients of the 
production function. To estimate these parameters consistently, instrumental variables are 
needed. Unfortunately, it is a difficult task to find valid instruments that vary across firms 
and over time. Nevertheless, the period of analysis is characterized by free trade with  
production sectors homogeneously exposed to foreign competition. Thus, there at least 
should be no markup shocks to instrument for. 
 

3. The Dynamics of Productivity in Chile 
 

In this section we characterize the estimates of TFP at the plant level. We use these 
measures to describe the evolution of productivity over time and across groups of plants 
controlling for several plant characteristics, such as age, size, and openness. The estimates 
are consistent with the hypothesis of productivity heterogeneity at the micro level. 
Moreover, they turn out to be a quantitatively relevant source of the observed heterogeneity 
in plant dynamics as they are significantly correlated with both, exit and input demands 
decisions.  

 
 

The Data 
 

The data in this study come from the Encuesta Nacional Industrial Anual (ENIA), 
an annual survey of manufacturing conducted by the Chilean statistics agency, the Instituto 
Nacional de Estadísticas (INE). The ENIA covers all manufacturing plants that employ at 
least ten individuals. Thus, it includes all newly created and continuing plants with ten or 
more employees, and it excludes plants that ceased activities or reduced their hiring below 
the survey's threshold. The ENIA represents about 50% of total manufacturing 

                                                           
8 According to Central Bank statisticians, about 3.5% of  plants belong to a multi-plant firm in our data set. 
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employment.9 It collects detailed information on plant characteristics, such as 
manufacturing subsector at the 4-digit ISIC level, sales, employment, investment, 
intermediate inputs and location. The available data cover the 1980-1999 period.  

 
The treatment of entry and exit is somewhat complicated by the fact that plants 

falling below the minimum employment boundary do not appear in the survey. Thus a plant 
interviewed in any given year, but that fails to enter the sample in the following year might 
not represent an exit. Similarly, a plant appearing for the first time in any given year does 
not necessarily correspond to an entry, as it might represent a growing plant that surpasses 
the ten people boundary. To reduce the extent of spurious identification of plant entry and 
exit, we artificially raised the sample threshold to 15 employees, following the strategy in 
Micco (1995).10  

 
We limited the analysis to eight 3-digit subsectors: food products (311), beverages 

(313), textiles (321), wood products (331), paper products (341), printing and publishing 
(342), chemicals products (352), and metal products (381). We excluded the other sub-
sectors because they are either small, with few observations and/or are organized in a 
manner inconsistent with the underlying behavioral model. For instance, we excluded 
petroleum and refining, and tobacco industries, because these sectors are organized as 
monopolies, and produce with very few plants. Furthermore, petroleum and refining are 
mostly state-owned. We also excluded sector 39 (manufactures not elsewhere classified) 
because of its natural heterogeneity.11   
 
 
Production Function Estimates 
 

The model was estimated using a third degree polynomial expansion in the first two 
steps of the algorithm, and a fourth order polynomial in the last step. The proxy for 
productivity in the first stage and for the cut off in the second stage were fully interacted 
with a set of dummy variables to allow the functions to vary over time. We used dummies 
for the periods 1980-81 (boom), 1982-83 (recession), 1984-89 (main structural reforms and 
recovery), 1990-1997 (rapid growth), and 1998-1999 (slowdown). We also included these 
time dummies in the production function, as they turned out to be significant, indicating the 
existence of aggregate productivity shocks. 

 
Table 1 presents the estimated elasticities of unskilled and skilled labor and of 

capital using different samples and methods. The left hand side panel of the table reports 
the estimates of the coefficients using a balanced panel based on plants that did not enter or 
leave the market during the sample period, whereas the right hand side panel uses the full 
sample. We present the results using seven different specifications: OLS and fixed effects 
with both samples, the OP algorithm on all available observations, the OP method 
                                                           
9 Industrial employment represented roughly 16% of total Chilean employment in 1999. 
10 We also excluded plants that report either no employment or no blue-collar workers, and plants that report 
zero wages, no production days, zero gross production value, negative value added, gross production value 
lower then value added, exports that are larger than total sales, or no ISIC code. 
11 The subsectors used in this study account for 60.1 % of total value added in the ENIA, once we exclude 
copper industries that are classified as mining in National Accounts. 
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restricting the sample to firms with strictly positive investment, and the LP extension with 
electricity as a proxy for productivity.12  

 
The reported elasticities exhibit wide variation across sectors. No matter which 

sample or method we use, we find that all coefficients are precisely estimated. In all cases 
the coefficients add up to a figure quite similar to one, indicating constants returns to 
scale.13 If we only consider the LP estimates (which we will later use to analyze the 
behavior of productivity at the plant level), the degree of returns to scale vary from 0.88 to 
1.16. The lowest elasticities of labor are in the printing and publishing sector, with 
elasticities close to 0.3, whereas the largest elasticities correspond to the beverages sector 
(with point elasticities of 0.51 and 0.46 for unskilled and skilled labor, respectively.) The 
coefficient on capital varies between 0.16 (papers) and 0.36 (chemicals).  

 
Pavcnik (2002), using data from the ENIA, obtains elasticities that are much lower 

than those presented here. Unfortunately, her results are not directly comparable to ours, as 
she uses a much shorter data set (up to 1986 only), and as she aggregates sectors at a two 
digit level. Moreover, she estimates production functions for gross production and not for 
value added, and hence includes materials as an input. Although gross production -- and not 
value added -- is the right concept at the disaggregate level, we chose to estimate 
production functions for value added in order to use electricity as a proxy.14  The use of 
gross output requires the direct inclusion of materials as inputs, and hence they cannot be 
used as a proxy for productivity. Nevertheless, although we get different point estimates, 
Levinsohn and Petrin (1999) obtain coefficients of the same order of magnitude as we do. 
They use the same subsample of the ENIA that Pavcnik uses, and find increasing returns in 
all the industries considered. Since we use the same methodology and proxies as LP, the 
differences in coefficients must be due to the samples used and the timing assumption on 
capital dynamics. 

 
The omission of productivity in OLS estimations should bias upwards the 

coefficients of inputs, as unobserved productivity is positively correlated with factor 
demands. This effect should be larger for factors that are easier to adjust; i.e. skilled and 
unskilled labor. Furthermore, the bias should be even smaller for capital given our 
assumption that investment becomes productive with a lag. Fixed effects estimations 
remove this bias only if productivity is constant over time. We believe it is unlikely that 
plant level TFP has remained constant over our period of analysis, which is not only long -
20 years-, but also characterized by major structural reforms. The direction of the bias on 
the capital coefficient is ambiguous if one conditions the sample on survival. Since firms 
with larger stocks of capital can stay in business even with low productivity shocks, there 
should be a negative correlation between the capital coefficient and the error term. Finally, 

                                                           
12 We excluded plants that demanded no electricity. A very small fraction of observations had to be 
eliminated (about 1.5% of them.) Some plants generate and sell electricity. Our measure of electricity is 
electricity consumed plus electricity generated minus electricity sold.  
13 The existence of constant returns to scale  is consistent with the level of openness displayed by the Chilean 
economy during the period under analysis. It also reflects the fact that we excluded sub-sectors organized as 
monopolies, such as petroleum and tobacco. Furthermore, it implies that we do not need to control for markup 
shocks that would invalidate the OP estimating procedure. See Syverson (2001). 
14 See Basu and Fernald (1995) for a discussion on production functions at different levels of aggregation.  
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the analysis of these biases is further complicated by the fact that labor and capital are 
correlated with each other.  
 

The OLS estimates of the first column include all these biases. Fixed effects 
coefficients tend to be much lower than the OLS elasticities. This is consistent with the fact 
that these estimates remove most of the variation within a firm that is not intertemporal, 
thus increasing the importance of errors in measurement. Furthermore, the degree of returns 
to scale is smaller than one in all industries. Including plants that eventually exit from the 
sample, not only increases significantly the samples available for estimation, but also helps 
remove the selection bias.  

 
Moving from the full sample OLS to any of the OP type methodologies changes the 

estimated coefficients in a manner consistent with the theoretical biases. In all cases the 
labor elasticities are smaller than in OLS estimations. In some cases, the coefficient on 
capital falls and in others it rises. In most sectors the elasticities of capital change 
significantly once we move from the OLS procedures to the OP methodology. There are 
also large changes when we compare the basic OP specification and its two modifications. 
Removing all plant observations with zero or negative investment changes significantly the 
estimated coefficients, especially those of capital.15 In most sectors the coefficient of capital 
rises, whereas the coefficients of labor fall.  

 
Summing up, our results indicate that in most sectors the correction for simultaneity 

and survival do change significantly the estimated coefficients. Furthermore, the direction 
of these changes is consistent with the removal of the expected biases. Therefore, our 
results confirm that production function estimates based on standard methods are flawed.  

 
 

Characterizing Plant-level Productivity 
 

Since estimates of plant-level TFP are usually not available, it is common to use 
average labor productivity to study the connection between efficiency and the behavior of 
plants. TFP is, however, the right concept to understand this connection. Labor productivity 
is endogenous to TFP. Moreover, its evolution is determined not only by changes in multi-
factor efficiency but also by the reallocation of inputs. The separate understanding of each 
of these sources of output per capita growth is quite relevant. For instance, while the former 
is unbounded and accounts for long-run growth, the latter is bounded by the efficient 
allocation of resources and correlates with the business cycle. Thus, a full characterization 
of aggregate efficiency allows a comprehensive understanding of long and short run 
growth.16  
 

Next, we characterize the dynamics over time and across different groups of plants 
of our estimates of TFP.  
  

                                                           
15 It also reduces the sample sizes to about a half. 
16 Our estimates of TFP are significantly and positively correlated with average labor productivity in seven 
out of  eight sectors. The correlations range from 0.13 in paper products to 0.55 in beverages.  
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Let ϖit represent the estimated of the level of TFP of plant i at time period t, using 
the production coefficients previously estimated with the LP version of the algorithm. That 
is, 
 

)ˆˆˆexp( u
itu

s
itsitkitit llky βββω −−−=  

 
 
Figure 1 displays the full dynamics of weighted average productivity at the industry 

level.17 All series are normalized to 100 in 1980. Although productivity fluctuates largely 
over time, 7 out of the 8 sectors display an upward trend, indicating that, on average, 
manufacturing sectors have become more productive in Chile over the period of analysis -- 
the exception being beverages. In other words, mean productivity growth is positive 
reflecting that, over time, industries are growing faster than inputs.  

 
Our estimates of TFP show that there are wide differences in efficiency levels, even 

within a sector and a year. Table 2 provides evidence of such heterogeneity. It shows the 
ratio of productivity for plants in the ninetieth percentile of the productivity distribution 
relative to the productivity of plants in the tenth percentile. These ratios show large 
differences, up to 15 times in some sectors and years. On average, during the 20 years 
considered, all sector have ratios higher than five, with food products and beverages having 
ratios higher than nine. These large differences in productivity are one likely explanation 
for the heterogeneity in exit and input usage decisions observed in the Chilean economy at 
the plant level.  

 
This dispersion in productivity could be due to measurement problems resulting 

from statistical errors, differences in input and output qualities across plants within the 
same sector, or utilization rates. Two reasons provide support for our finding, however. 
First, our estimates are consistent with the international evidence. Plant level data from 
both developed and developing economies, where measurement errors are likely to vary, 
show similar patterns of dispersion.18 Second, our productivity estimates correlate with 
other variables in manners consistent with our theoretical priors. In what follows we 
provide such evidence, describing the evolution of productivity over time and across groups 
of plants while controlling for plant characteristics, such as age, size, and openness. 

 
The theoretical literature emphasizes several variables as determinants of plant-level 

TFP. For instance, a number of models with heterogeneous plants relate plant level TFP to 
plant’s age. Jovanovic (1982) assumes that firms are endowed by a cost function that is 
revealed slowly over time through production activity. Ericson and Pakes (1995) develop a 
model of learning, in which firms can explore and develop processes that make them more 
efficient. These hypotheses, and the fact that inefficient firms tend to exit the market, imply 
that older plants should be more productive than younger ones. Another determinant of the 
observed patterns in plant-level productivity may be size, as different degrees of economies 
of scale should induce different efficient scales of production. Finally, specific policies 

                                                           
17 Plant TFP has been weighted by its contribution to total sectoral value added in any given year.  
18 See Bartelsman and Doms (2000). 
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should also be relevant as, for instance, they expose plants to different degrees of 
competition.  

 
Our estimates of plant-level efficiency show mixed patterns. Some sectors display 

dynamics consistent with our theoretical priors. Others do not, however. For instance, the 
relationship between size and productivity is mixed. In general, sectors display a positive 
relationship when size is measured by sales, but this correlation is much weaker when size 
is measured by the number of employees. Still, these results suggest that economies of scale 
may be relevant in understanding productivity. They may also reflect reverse causality, as 
more efficient plants represent a larger share of market sales, and more productive plants 
tend to demand more labor.  

 
The correlation between age and productivity is also mixed. For instance, in five 

sectors 10 years-old plants are less productive than startups.19 These simple correlations, 
however, confound cohort, age and time effects. Age effects capture the life-cycle of plant 
level productivity. For instance, if there are learning-by-doing effects, then plants become 
more productive as they age. Selection effects may also account for an increasing age 
profile of plant level TFP, as the less productive plants shutdown at earlier ages. However, 
if different vintages of plants had access to different technologies when they were born, and 
if the technology frontier continually improves, then older plants -- those born earlier -- 
display a lower average TFP level.  Thus plants in the sample observed at age 20 were born 
long before those we observe at younger ages and so have on average lower lifetime TFP. 
Ignoring these birth-year effects leads to a negative bias in the estimate of the slope of the 
age profile. Finally, year specific effects, such as the stage of the business cycle, may affect 
average TFP of plants in each year, as aggregate shocks account for a share of individual 
uncertainty. If certain plants are observed only in the downside of the business cycle, we 
would then incorrectly assign them a negative age effect.  

 
To control for these different effects, we decompose TFP into age, cohort and time 

effects.20 We follow Deaton and Paxson (1994) and attribute growth in TFP to cohort and 
age effects, and cyclical fluctuations to year effects.21 As in Deaton and Paxson we 
normalize the effects such that year effects average to zero over the long run.  

 
The first panel of Figure 2 displays average TFP for four cohorts observed over the 

1980-1999 period. The older cohort is composed of plants that entered the market between 
1980 and 1984. The other three cohorts are formed by plants that were established between 
1985 and 1989, 1990 and 1994, and 1995 and 1999. Each line in the figure tracks average 
TFP of plants in each cohort over the sample period.  That is, the first point in the top line 
shows average TFP of the youngest cohort in 1995. The second point shows average TFP 
for this same group in 1996, and so on. The figure shows that there are separate cohort and 
age effects in plant level TFP. In most cases, at any given age, the lines for younger cohorts 
are above the lines for older cohorts. For instance, at age three the youngest cohort displays 

                                                           
19 We only consider plants whose age is actually observed in the sample, namely, plants born within the 
sample period. 
20 We do not analyze the data at a sectoral level to avoid small sample problems. 
21 Deaton and Paxson (1994) studies the life-cycle profiles of household income. 
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a level of productivity that is about 60% higher than that of the oldest cohort. This 
difference reflects the effects of technical progress on different vintages of plants. There is 
also an upward sloping life-cycle profile, most evident for the cohorts observed for a longer 
time period. Finally, the age profile of all cohorts is downward sloping during the final 
years of our sample, possibly reflecting that this has been a period of slow growth in Chile. 

 
The next three panels of Figure 2 show the decomposition into age, cohort and year 

effects.  The estimated cohort effects are declining with age. In other words, plants born 
later have access to better technologies, and thus display higher average TFP.22 Age effects 
are flat until age eight, to then become generally upward sloping until age nineteen when 
productivity drops again to the level attained before age eight. This initial period of low 
productivity growth is consistent with selection effects that lead the least productive plants 
to leave the market at young ages. The rest of the life-cycle profile is also consistent with 
learning effects. Finally, the drop is productivity by the end of the second decade may 
reflect the completion of the life cycle of plants, as the evidence shows for plants in the 
United States.23 Year effects follow the pattern of the Chilean business cycle. The effects 
fall dramatically between 1981 and 1982, and then fluctuate until the early 1990s. Then 
they rise as the economy grows much faster, to finally fall after 1995. Finally, our results 
show that TFP is driven mostly by age and cohort effects, as cyclical fluctuations account 
for a small share of overall productivity. 

 
Finally, several studies have argued that trade has been key to account for the 

sustained period of growth the Chilean economy experienced since the mid 1980s.24 Table 
3 shows the average level of plant-level productivity according to the degree of outward 
orientation, measured as the ratio of exports to sales. In six sectors, plants that export are 
more productive than plants that do not, the exception being beverages and paper products. 
Both of these sectors, however, do display the highest productivity level when exports are 
larger than 50% of their sales. In general, nevertheless, there is no monotonic relationship 
between the percent of sales that is placed abroad and productivity. For instance, whereas in 
beverages the productivity of plants that export more than half their sales is twice that of 
plants that export 5-10% of their sales, in food products the corresponding ratio is less than 
a half. Again, these associations do not establish causality: plants that export may do so 
precisely because they are more efficient, as suggested by Roberts and Tybout (1997).  

 
 

TFP and Heterogeneous Plant Dynamics 
 
Next, we show that the estimated differences in plant-level TFP are a quantitatively 

relevant source of the observed heterogeneity in the behavior of plants.   
 
We start by inquiring whether the exit behavior of plants is associated to their 

efficiency levels. Table 4 compares the mean productivity levels of startups and shutdowns 
                                                           
22 Jensen, McGuckin, and Stiroch (2001) find that the evolution of productivity in U.S. manufacturing plants 
from 1963 to 1992 is significantly determined by a “vintage effect” associated with the higher productivity of 
recent cohorts of new plants relative to earlier cohorts of new plants. 
23 See Bartelsmand and Doms (2000). 
24 For instance, see Pavcnik (2002). 
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to the mean productivity of continuing plants. On average, plants that shut down have lower 
productivity than incumbents in the beverages, wearing apparel, paper products, and 
printing and publishing industries. In the food, textiles, wood, chemical, and metal products 
sectors, exiting plants display higher productivity than the average continuing plant. At a 
first sight, this result seems counterintuitive. However, these figures do not control for 
other relevant factors, such as the capital stock, that are correlated with exit behavior and 
productivity. Moreover, these figures look only at means, and not at the full distribution of 
TFP. 

 
To better understand the differences in the productivity of incumbent plants, 

shutdowns and startups, we constructed the cumulative distribution of productivity for 
these three groups of plants. Figure 3 shows these distribution functions for the full sample. 
No matter the level of productivity, the distribution of shutdowns is to the left of the 
distribution of productivity of continuing plants. In other words, the probability of 
exceeding any given level of productivity is higher among continuing plants than 
shutdowns, and thus the first distribution first order stochastically dominates the second 
distribution. This pattern is also found at the 3-digit aggregation level in most cases. In 
Table 5 we provide the p-values associated to tests of first order stochastic dominance that 
compare the TFP distribution of incumbents and shutdowns (Barrett and Donalds, 2003). In 
all cases but one (chemical products), the tests strongly reject the null of equal distributions 
in favor of the alternative that the distribution of incumbents dominates the distribution of 
deaths. 

 
To formally investigate the relationship between exit and efficiency, Table 6 reports 

the results of probit regressions that explain deaths as a function of the level of productivity 
and capital, the latter to control for size. We regress the probability of shutting down during 
the next five years on plant-level productivity. As expected, all sectors but one show a 
negative coefficient, five of which are statistically significant. Thus, in general more 
productive and larger plants have a higher survival rate during a five year horizon. 
However, the magnitudes of the effects are in general not large, as one standard deviation 
in productivity reduces the shut down probability by 0.76 percentage points for the whole 
sample. Perhaps, these effects are small because plants in all sectors already have on 
average a probability of survival of 0.90. Beverages and textiles are the exceptions, with 
increases in the probability of survival of 18 and 8.7 percentage points respectively.25 

 
Next, we study the connection between plant TFP and factor demands. According to 

the theoretical framework, both labor and capital demand should be increasing in 
productivity.26 OLS estimations of the log of labor and the log of the stock of capital as a 
function of the log of productivity are reported in Table 7 and Table 8, respectively. The 
results are consistent with our theory as, in general, input demands show a positive 
productivity elasticity. Furthermore, if we include employment as a regressor for capital 
                                                           
25 The results are not qualitatively modified if ones regresses the probability of death with the log of 
productivity and the log of capital. Moreover, probit regressions looking at the probability of death during a 
one year horizon produce similar results although of smaller magnitude. In this case, the probability of 
survival for the whole sample increases 0.36 percentage points when productivity increases one standard 
deviation.  
26 The autocorrelation of TFP in our full database, controlling for year and sector effects, is 0.594. 
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demand, and capital stock as a regressor for employment demand, to control for size, all 
coefficients are positive, as expected.  

 
Plant-level employment displays positive and significant coefficients in all sectors. 

The estimated elasticities are large, ranging between 0.08 an 0.35. Capital, however, 
although it has a positive and significant elasticity for the whole sample, shows either no 
significant or a negative elasticity in most sectors. The low correlation between the capital 
stock and productivity exhibited in these sectors is consistent with evidence of lumpy 
investment found in our data.27 If the demand for capital faces non convex adjustments 
costs, the correlation between current capital decisions and current productivity debilitates. 
Moreover, our estimates of productivity provide support for the observed lumpiness of 
investment. Table 9 reports probit regressions for the probability of investing and a set of 
dummies capturing one-year lagged plant TFP quartiles, from lowest to highest. The 
coefficients represent the change in the probability of investing when moving from one 
quartile to the next, relative to the lowest quartile. For instance, the overall effect of moving 
from the first to the second quartile in the TFP distribution is to increase the probability of 
investing in 9.7 percentage points. Moving further up the distribution, this probability 
increases in 3.4 and 2.3 extra percentage points. These are large effects. This pattern holds 
in general across sectors; that is, the probability of investing and productivity are more 
positively correlated the larger is the size of the productivity shock. This evidence  suggests 
thatfixed adjustment costs are relevant.28  

 
Thus, the estimated correlations between TFP and the behavior of plant-level 

employment and capital stock provide empirical support for idiosyncratic productivity 
shocks as a source of observed heterogeneity in the outcome of plants.  

 
 
4. The micro sources of aggregate productivity growth in Chile 
 

In this section we use our estimates of plant-level TFP to study the microeconomic 
sources of aggregate growth in Chile during the last two decades. We do so by 
disentangling aggregate productivity dynamics into two processes: first, the changes in 
efficiency within firms; second, the reallocation arising from the expansion and contraction 
of continuing plants as well as from the entry and exit of plants.  
 

The recent Chilean experience provides a rich setting to investigate these sources of 
growth. During the second half of the 1970s and the early 1980s, Chile carried out several 
market oriented policies. Most distortions on prices and quantities were eliminated and 
producers were forced to compete in foreign markets. Overall, these reforms provided an 
environment that favored efficiency, both through the displacement of resources from less 
to more efficient producers and from the generalized adoption and innovation of better 
technologies and production processes. The study of plant-level productivity dynamics 
allows a complete understanding of the sources of aggregate growth. Most studies that look 
at the effect of market reforms on growth in Chile have only partially analyzed the current 

                                                           
27 Considering the full sample, at any moment in time 40% of plants report zero investment. 
28 See Cooper and Haltiwanger (2000). 
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available evidence. They have missed the effect from reallocation by concentrating 
exclusively on aggregate data, or they have not captured the complete dynamics resulting 
from reforms by focusing on a period of time too short to allow these policies to fully affect 
the economy. Moreover, during the two decades, Chile has experienced both deep 
depressions and periods of sustained and stable growth.  

 
A separate understanding of both sources of aggregate productivity dynamics is 

relevant as they implications differ substantially. For instance, while within-plants 
efficiency increases are unbounded and account for long-run growth, productivity gains 
from reallocation are bounded by the efficient allocation of resources and correlate with the 
business cycle.  

 
 We follow Foster, Haltiwanger, and Krizan (1998) by decomposing productivity 
growth into five elements: (i) a within-plant effect, given by productivity growth weighted 
by initial output shares; (ii) a between-plant effect, that captures the gains in aggregate 
productivity coming from the expanding market share of high productivity plants relative to 
the initial aggregate productivity level; (iii) a cross effect reflecting gains in productivity 
from high-productivity growth plants’ expanding shares or from low-productivity growth 
plants’ shrinking shares; (iv) an entry effect which is the sum of the differences between 
each entering plant’s productivity and initial aggregate productivity, weighted by its market 
share; and (v) an exit effect given by the sum of the differences between each exiting 
plant’s productivity and initial aggregate productivity, weighted by its market share.29  The 
decomposition is given by: 
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where ∆  refers to changes over the k-year interval between the first year (t − k) and the last 
year (t); θit is the share of plant’s i value added in sectoral value added at time t; C, N, and 
X are sets of continuing, entering, and exiting plants, respectively; and Pt-k is the aggregate 
productivity level of the sector as of the first year (t − k). Thus, new plants contribute 
positively to productivity growth when they have higher productivity than the initial 
industry average. Exiters do so when they have lower productivity than the initial industry 
average. The within effect reflects the contribution of increases in productivity in 
continuing plants given their initial shares. The between effect reflects the contribution of 
share changes under the given initial productivity level. Finally, the cross-effect term 
corresponds to the contribution of continuing plants through changes in market shares of 
plants with increasing productivity.  

 

                                                           
29 There exist several alternative decomposition methods that follows this tradition. See Foster et al. (1998) 
for further discussions on alternative decomposition methods.  
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Table 10 reports this decomposition. During the 1980’s TFP dropped, mostly driven 
by a negative contribution of within-plant productivity growth. During most of the 1990’s, 
however, TFP grew significantly with a positive, although less important contribution of 
the within-plant effect. Only by the end of the decade, during the economic slowdown, the 
within-plant term is negatively correlated with the overall change in TFP. In all periods, 
total reallocation is large and positive. Had the reallocation term been zero, the drop in TFP 
would have been 3 to 4 times larger in the 1980’s. The positive total reallocation effect is 
mostly driven by the cross effect over all subperiods. The sign of this term reflects a 
positive covariance between shares and productivity changes; i.e., that production is being 
redistributed towards plants that become more productive. The between and cross effects 
offset each other in all periods, indicating that the plants with larger share growth were 
plants that initially were less productive than the average, but that exhibited positive withn-
plant TFP growth.  

 
Overall, both within plant efficiency changes and reallocation effects have been 

relevant for aggregate productivity dynamics in Chile during the last two decades. 
Although the contribution of each source of productivity gains has varied over time, 
reallocation has positively contributed in a larger magnitude during periods of negative or 
low growth; i.e. during 1981-83 and 1997-99.30 Furthermore, the positive contribution of 
within-plant efficiency gains observed in the 1990s, is consistent with the existence of a lag 
between the implementation of major structural reforms and their complete effect on the 
economy. Most reforms were undertaken during the late 1970s and early 1980s. Once 
reforms were completed, unbounded within-plants efficiency gains driven by technology 
adoption and innovation occurred. 

 
 

5. Concluding Remarks 
 
Total factor productivity varies widely across plants in Chile. Even within the same 

sector and at any moment in time, plants display large differences in efficiency. We showed 
that these differences in efficiency are a quantitatively relevant source of the observed 
heterogeneity in the behavior of plants.  

 
We then used these plant-level TFP estimates to provide a complete characterization 

of aggregate efficiency dynamics. We find that all sources of TFP growth -- within plant 
increases in productivity, the reallocation of resources across incumbent plants, and the 
process of entry and exit of plants --  are relevant 

 
Market oriented policies promote technology adoption and innovation, and facilitate 

the process of reallocation of resources from less to more efficient economic units. 
Exposing firms to the best practice is key in generating conditions that promote aggregate 
growth.31  Our results suggest that there might be large costs associated with policies that 

                                                           
30 See Caballero and Hammour (1994) for a formalization of the connection between efficiency and 
reallocation during the recessions. 
31 Baily and Solow (2001) provide international evidence of the connection between the intensity of 
competition, the observed differences in TFP across firms, and aggregate efficiency. 
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alter the natural process of birth, expansion, and death of plants: growth may be retarded 
and development limited. As better plant-level data are collected and as a mapping between 
policies and productivity is constructed, we should be able to better understand the recent 
evolution of a wide range of economic experiences, both in the short and long run. 

 
 

6. References 
 
Ahn, S. (2001). “Firm Dynamics and Productivity Growth: A Review of Micro Evidence 
From OECD Countries.” OECD Economic Department Working Papers # 297. 
 
Baily, M. and R. Solow. (2001). “International Productivity Comparisons Built from the 
Firm Level.” Journal of Economic Perspectives 15 (3), 151-172. 
 
Barrett, G. and S. Donalds. (2003). “Consistent Tests for Stochastic Dominance.” 
Econometrica 71 (1), 71-104. 
 
Bartelsman, E.J. and M. Doms. (2000). “Understanding Productivity: Lessons from 
Longitudinal Microdata.” Journal of Economic Literature 38 (3), 569-594. 
 
Basu, S. and J. Fernald (1995). “Aggregate Productivity and the Productivity of 
Aggregates.” NBER Working Paper # 5382. 
 
Bergoeing, R., P. Kehoe, T. Kehoe, and R. Soto. (2002). “A Decade Lost and Found: 
Mexico and Chile in the 1980s.” Review of Economic Dynamics, 5 (1), 166-205.  
 
Bergoeing, R., A. Hernando, and A. Repetto. (2003). “Plant Dynamics in Chile.” Centro de 
Economía Aplicada, Universidad de Chile, mimeo.  
 
Caballero, R. and M. Hammour. (1994). “The Cleansing Effect of Recessions.” American 
Economic Review 84 (5), 1350-1368.  
 
Camhi, A., E.Engel, and A.Micco. (1997) . “Employment and Productivity Dynamics in 
Chilean Manufacturing: Micro Evidence and Macro Consequences.” In F.Morandé and 
R.Vergara (eds.),  Empirical Analysis of Growth in Chile, Santiago: CEP and ILADES, 
197-225. 
 
Cooper, R. and J. Haltiwanger. (2000). “On the Nature of Capital Adjustment Costs.” 
NBER Working Papers Series, WP # 7925.  
 
Davis, S., J. Haltiwanger and S. Schuh. (1996). Job Creation and Destruction. The  MIT 
Press.  
 
Deaton, A. and C. Paxson (1994). “Intertemporal Choice and Inequality.” Journal of 
Political Economy, 102 (3), 437-467. 
 



 18 

Doms, M. and T. Dunne. (1998). “Capital Adjustment Patterns in Manufacturing Plants.” 
Review of Economic Dynamics 1, 409-429.  
 
Ericson, R. and A. Pakes. (1995). “Markov-Perfect Industry Dynamics: A Framework for 
Empirical Work.” Review of Economic Studies 62, 53-82.  
 
Foster, L., J.C. Haltiwanger, and C.J. Krizan (1998), “Aggregate Productivity Growth: 
Lessons from Microeconomic Evidence”, NBER Working Paper # 6803. 
 
Griliches, Z. and J. Mairesse (1995). “Production Functions: The Search for Identification,” 
NBER Working Paper # 5067. 
 
Jensen, B., R. McGuckin, and K. Stiroch. (2000). “The Impact of Vintage and Survival on 
Productivity: Evidence form Cohorts of U.S. Manufacturing Plants.” Federal Reserve Bank 
of New York, mimeo.  
  
Jovanovic, B. (1982). “Selection and the Evolution of Industry.” Econometrica, 50 (3), 
649-670. 
 
Levinsohn, J. and A.Petrin. (1999). “When Industries Become More Productive, Do Firms? 
Investigating Productivity Dynamics.” NBER Working Paper 6893. 
 
Liu, L. (1993). “Entry-Exit, Learning and Productivity Change: Evidence from Chile.” 
Journal of Development Economics 42, 217-242. 
 
Micco, A. (1995). “Creación, Destrucción y Reasignación de Empleos en Chile.” M.A. 
Thesis, Universidad de Chile. 
 
Olley, S. and A. Pakes. (1996). “The Dynamics of Productivity in the Telecommunication 
Equipment Industry.” Econometrica 64 (6), 1263-1298. 
 
Pakes, A. (1994). “Dynamic Structural Models, Problems and Prospects: Mixed 
Continuous Discrete Controls and markets Imperfections.” In Sims,C. (Ed.), Advances in 
Econometrics, Sixth Wold Congress Volume II, 171-259, New York, Cambridge. 
 
Pavcnik, N. (2002). “Trade Liberalization, Exit, and Productivity Improvements: Evidence 
from Chilean Plants.” The Review of Economic Dynamics, 69 (1), 215-242. 
 
Roberts, M.J. and J.R. Tybout. (1997). “The Decision to Export in Colombia: An Empirical 
Model of Entry and Sunk Costs.” American Economic Review, 87 (4), 545-64. 
 
Salter, W.E.G. (1966). Productivity and Technical Change. Cambridge University. 
 
Syverson, C. (2001). “Output Market Segmentation and Productivity.” Economic Studies, 
US Census 01-07. 

 
 



 19 

  

OLS Fixed 
Effects OLS Fixed 

Effects
OP       

All obs.
OP Positive 
Investment

LP   Positive 
Electricity

Food products (311)
0.395 0.109 0.428 0.174 0.366 0.346 0.288
0.017 0.016 0.008 0.008 0.008 0.011 0.008
0.249 0.334 0.451 0.380 0.415 0.309 0.370
0.018 0.021 0.009 0.011 0.009 0.012 0.009
0.405 0.142 0.320 0.091 0.294 0.441 0.279
0.010 0.016 0.004 0.007 0.019 0.035 0.009

Sum of Coefficients 1.048 0.585 1.199 0.646 1.075 1.096 0.937
N Observations 3844 3844 16725 16725 14596 6411 14298

Beverages (313)
0.552 0.213 0.647 0.275 0.620 0.580 0.511
0.048 0.060 0.030 0.037 0.030 0.034 0.031
0.656 0.558 0.588 0.467 0.561 0.472 0.464
0.062 0.083 0.037 0.046 0.037 0.042 0.037
0.184 0.117 0.133 0.126 0.092 0.211 0.184
0.027 0.034 0.014 0.021 0.022 0.045 0.036

Sum of Coefficients 1.392 0.888 1.367 0.868 1.272 0.014 1.159
N Observations 476 476 1593 1593 1397 734 1375

Textiles (321)
0.295 0.056 0.447 0.210 0.438 0.402 0.416
0.030 0.034 0.013 0.016 0.013 0.016 0.014
0.563 0.490 0.429 0.441 0.424 0.356 0.373
0.032 0.039 0.016 0.019 0.016 0.019 0.017
0.101 0.138 0.155 0.087 0.157 0.164 0.166
0.019 0.028 0.008 0.011 0.035 0.075 0.034

Sum of Coefficients 0.959 0.684 1.031 0.738 1.018 0.922 0.955
N Observations 837 837 4978 4978 4231 1857 4161

Wood products (331)
0.357 0.174 0.446 0.243 0.407 0.425 0.355
0.042 0.055 0.016 0.020 0.016 0.020 0.016
0.677 0.636 0.604 0.675 0.544 0.433 0.477
0.054 0.064 0.018 0.025 0.018 0.023 0.019
0.150 0.088 0.153 0.060 0.147 0.292 0.252
0.034 0.041 0.009 0.013 0.049 0.065 0.034

Sum of Coefficients 1.185 0.898 1.202 0.978 1.099 1.149 1.083
N Observations 509 509 4425 4425 3717 1618 3635

Unskilled Labor

Capital

Table 1. Production Function Estimates

Balanced Panel

Skilled Labor

Full Sample

Skilled Labor

Unskilled Labor

Capital

Unskilled Labor

Capital

Skilled Labor

Unskilled Labor

Capital

Skilled Labor
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OLS Fixed 
Effects OLS Fixed 

Effects
OP        

All obs.
OP Positive 
Investment

LP   Positive 
Electricity

Papers products (341)
0.012 0.097 0.505 0.174 0.483 0.469 0.460
0.094 0.098 0.028 0.031 0.028 0.032 0.028
0.161 0.452 0.401 0.219 0.411 0.336 0.372
0.067 0.114 0.031 0.030 0.033 0.037 0.032
0.583 0.253 0.211 0.134 0.297 0.279 0.161
0.071 0.146 0.016 0.021 0.046 0.086 0.080

Sum of Coefficients 0.755 0.803 1.117 0.528 1.192 1.084 0.992
N Observations 80 80 1051 1051 881 499 869

Printing and Publishing (342)
0.395 0.379 0.404 0.254 0.339 0.341 0.299
0.058 0.067 0.015 0.019 0.016 0.018 0.016
0.480 0.275 0.473 0.249 0.396 0.359 0.341
0.063 0.053 0.019 0.020 0.020 0.023 0.020
0.298 0.053 0.215 0.156 0.087 0.454 0.242
0.057 0.068 0.010 0.014 0.101 0.053 0.053

Sum of Coefficients 1.172 0.706 1.092 0.659 0.822 1.154 0.882
N Observations 220 240 2274 2294 1913 773 1887

Chemicals products (352)
0.423 0.162 0.553 0.186 0.470 0.431 0.513
0.036 0.040 0.020 0.022 0.020 0.022 0.020
0.210 0.325 0.231 0.276 0.197 0.142 0.212
0.035 0.038 0.019 0.022 0.020 0.022 0.021
0.362 0.309 0.263 0.114 0.313 0.465 0.361
0.029 0.041 0.013 0.016 0.060 0.075 0.081

Sum of Coefficients 0.994 0.796 1.046 0.576 0.979 1.039 1.086
N Observations 700 700 2630 2630 2317 1502 2252

Metal products (381)
0.333 0.221 0.448 0.259 0.413 0.386 0.390
0.023 0.029 0.012 0.015 0.012 0.014 0.012
0.441 0.375 0.472 0.437 0.442 0.359 0.407
0.027 0.032 0.014 0.018 0.014 0.016 0.015
0.303 0.185 0.189 0.114 0.224 0.275 0.205
0.014 0.025 0.007 0.011 0.035 0.060 0.044

Sum of Coefficients 1.076 0.780 1.110 0.811 1.080 1.021 1.002
N Observations 955 955 5689 5689 4674 2341 4612
Standard errors in parentheses. The standard errors of the capital coefficient were estimated through a boostrap
 using  500 replicators.

Skilled Labor

Unskilled Labor

Capital

Capital

Skilled Labor

Unskilled Labor

Capital

Table 1 Continued. Production Function Estimates

Balanced Panel Full Sample

Skilled Labor

Unskilled Labor

Capital

Skilled Labor

Unskilled Labor



 21 

  

Year Food Products 
311

Beverages     
313

Textiles     
321

Wood 
Products    

331

Papers 
Products    

341

Printing and 
Publishing 342

 Chemicals 
products 352

Metal 
Products    

381

1980 7.76 8.99 5.35 8.79 4.55 7.23 4.98 5.17
1981 8.47 15.60 6.27 8.93 4.80 7.59 6.14 4.61
1982 10.59 14.44 6.22 9.87 4.57 5.41 6.12 6.36
1983 10.13 10.44 6.39 12.07 6.22 4.80 5.34 6.27
1984 8.84 8.29 5.66 10.08 8.69 5.90 5.24 5.41
1985 9.93 8.78 5.30 9.19 8.70 4.45 4.58 6.04
1986 13.09 9.26 7.90 9.28 11.80 4.07 4.87 4.65
1987 11.74 8.07 5.24 8.77 11.21 5.83 3.99 4.87
1988 13.37 9.76 5.12 6.83 10.95 5.94 5.63 5.53
1989 10.22 7.04 5.84 6.71 13.58 5.23 4.73 4.61
1990 9.96 8.19 5.34 5.35 6.98 6.57 3.80 4.41
1991 9.50 6.44 6.30 5.02 8.95 6.40 6.05 4.69
1992 7.77 5.15 4.82 5.47 6.71 5.23 4.59 4.27
1993 7.47 8.34 5.42 5.20 8.08 4.15 5.50 4.04
1994 6.94 8.66 4.69 5.45 8.72 3.77 5.61 4.29
1995 7.14 5.78 4.54 6.29 11.75 5.90 5.12 3.97
1996 7.51 7.98 5.02 5.19 6.48 5.27 4.92 4.74
1997 7.30 7.63 5.11 7.47 7.88 4.49 6.35 4.12
1998 7.28 8.63 5.54 6.56 7.21 5.35 5.13 4.31
1999 7.48 13.98 4.42 7.44 5.85 5.04 4.72 5.33

  Figures in thousands of 1985 Chilean Pesos

Table 2.  Ratio of Percentiles
(Percentile 90 / Percentile 10)
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Ratio Export to 
Sales %

Food Products  
311

Beverages   
313

Textiles     
321

Wood 
Products    

331

Papers 
Products    

341

Printing and 
Publishing 

342

 Chemicals 
products 352

Metal 
Products    

381

0 2141 2816 2666 1008 6446 2525 850 2331
Greater than 0 3040 2335 2997 1087 6393 4295 964 2933

[0, 5) 2556 2765 2693 993 6092 3295 932 2446
[5, 10) 4523 1619 2700 595 5108 2724 788 3200
[10, 20) 3506 1550 2855 570 4933 1901 995 2978
[20, 30) 1724 1909 2421 1252 3309 1804 861 2589
[30, 40) 2258 1727 2475 846 5440 2113 663 1481
[40, 50) 1769 2099 5045 755 6941 2371 223 1778
Over 50 1877 3114 3546 1329 7385 2431 539 1868

  Figures in thousands of 1985 Chilean pesos.

Table 3. Weighted Average Productivity According to the Ratio of Export to Sales.
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Food Products (311) 0.0102
Beverages (313) 0.0776
Textiles (321) 0.0000
Wood Products (331) 0.0000
Paper Products (341) 0.0269
Printing and Publishing Products (342) 0.0265
Chemical Products (352) 0.3402
Metal Products (381) 0.0057

Table 5. Tests of First Order Stochastic Dominance
P-Values

Incumbents Startups Shutdowns Startups Shutdowns
Food Products (311) 2531 2022 3591 0.80 1.42
Beverages (313) 2697 1141 2514 0.42 0.93
Textiles (321) 2785 3409 3116 1.22 1.12
Wood Products (331) 1041 1010 1557 0.97 1.50
Papers Products (341) 6426 2649 5193 0.41 0.81
Printing and Publishing (342) 3195 3350 1803 1.05 0.56
Chemicals products (352) 911 880 1534 0.97 1.68
Metal Products (381) 2538 3360 3362 1.32 1.32
Productivity in thousands of 1985 Chilean pesos.

Table 4.  Weighted Average Productivity of Continuing, Entering and Exiting Plants

Relative to Incumbents
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Table 6. Probability of Plant Death

Productivity Capital Stock Productivity Capital Stock
Food Products (311) -7.17E-05 -1.88E-07 -1.87E-05 -4.91E-08

1.49E-05 2.95E-08 3.88E-06 7.67E-09

Beverages (313) -2.16E-04 -2.26E-07 -6.13E-05 -6.42E-08
3.97E-05 7.50E-08 1.10E-05 2.12E-08

Textiles (321)                     -2.33E-04 -2.97E-07 -6.05E-05 -7.71E-08
2.30E-05 7.51E-08 5.85E-06 1.94E-08

Wood Products (331)          -7.64E-05 -3.98E-07 -2.52E-05 -1.31E-07
4.94E-05 9.65E-08 1.63E-05 3.18E-08

Paper Products (341) -1.58E-05 -5.72E-09 -3.41E-06 -1.23E-09
1.94E-05 5.93E-09 4.17E-06 1.27E-09

Printing Products (342) -1.01E-04 -4.87E-07 -2.67E-05 -1.28E-07
4.70E-05 1.48E-07 1.24E-05 3.75E-08

Chemical Products (352) 2.64E-05 -1.22E-07 5.15E-06 -2.37E-08
3.65E-05 8.16E-08 7.13E-06 1.59E-08

Metal Products (381)          -4.65E-05 -5.41E-07 -1.14E-05 -1.33E-07
2.15E-05 1.21E-07 5.28E-06 2.94E-08

All sectors -1.98E-05 -2.69E-08 -5.30E-06 -7.20E-09
3.20E-06 6.70E-09 8.56E-07 1.80E-09

The second entry is the standard error.

Coefficient Marginal Effect
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Productivity Capital Stock
Food Products (311) 0.141 0.276

0.007 0.003

Beverages (313) 0.213 0.311
0.021 0.009

Textiles (321)                          0.111 0.357
0.018 0.009

Wood Products (331)              0.149 0.331
0.014 0.007

Paper Products (341) 0.111 0.373
0.035 0.009

Printing Products (342) 0.350 0.347
0.027 0.010

Chemical Products (352) 0.085 0.395
0.026 0.009

Metal Products (381)               0.136 0.284
0.014 0.005

All sectors 0.135 0.308
0.005 0.002

OLS regressions including a full set of time dummies, and t and
t-1 average employment. The pooled regression also includes a 
full set of sectoral dummies. Productivity is current plant TFP.
Capital stock is positive. The second entry is the standard error.
Employment is t-1 and t average adjusted employment.

Table 7. Productivity and Plant-level Employment 
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Productivity Employment
Food Products (311) 0.184 1.588

0.017 0.014

Beverages (313) -0.140 1.354
0.047 0.043

Textiles (321)                     -0.004 1.166
0.032 0.020

Wood Products (331)         -0.220 1.356
0.030 0.022

Paper Products (341) 0.142 1.758
0.070 0.035

Printing Products (342) -0.113 1.439
0.058 0.028

Chemical Products (352) -0.270 1.418
0.044 0.026

Metal Products (381)          -0.091 1.565
0.034 0.023

All sectors 0.055 1.485
0.011 0.008

OLS regressions including a full set of time dummies, and t and
t-1 average employment. The pooled regression also includes a 
full set of sectoral dummies. Productivity is current plant TFP.
Capital stock is positive. The second entry is the standard error.

Table 8. Productivity and Plant-level Capital Stock
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II III IV
Food Products (311) 0.087 0.113 0.180

0.011 0.011 0.010

Beverages (313) 0.110 0.108 0.139
0.027 0.027 0.027

Textiles (321)                   0.105 0.146 0.132
0.019 0.019 0.019

Wood Products (331)        0.092 0.157 0.156
0.021 0.020 0.020

Paper Products (341) 0.126 0.214 0.056
0.034 0.031 0.039

Printing Products (342) 0.117 0.185 0.175
0.028 0.027 0.028

Chemical Products (352) 0.078 0.071 0.066
0.016 0.016 0.016

Metal Products (381)        0.094 0.119 0.132
0.017 0.017 0.017

All sectors 0.097 0.131 0.154
0.007 0.007 0.007

Probit regressions including a full set of time dummies, and t and
t-1 average employment. The pooled regression also includes a 
full set of sectoral dummies. Productivity is current plant TFP.
The second entry is the standard error.

Table 9. Lumpy Gross Investment

Marginal Effect
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Total
Total Within Between Cross Entry Exit Net entry Reallocation

1983-81 -246.4 -697.0 -254.2 658.4 17.4 -29.0 46.4 450.6
1983-90 -34.8 -144.9 -271.9 367.1 -67.8 -82.7 14.9 110.1
1990-97 713.3 137.2 -268.2 570.0 82.1 -192.2 274.3 576.1
1997-99 634.9 -71.0 -269.0 757.6 333.2 115.9 217.2 705.9

1981-99 757.8 286.4 -144.3 263.5 502.6 150.5 352.1 471.3
Figures in thousands of 1985 Chilean pesos.

Table 10.  Decomposition of TFP Growth 
(all sectors)
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Figure 1. Weighted Average Productivity at the Industry Level, 
(1980=100)
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Figure 2a. TFP by Cohort
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Figure 2b. TFP Decomposition: Age Effects
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Figure 2c. TFP Decomposition: Cohort Effects
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Figure 2d. TFP Decomposition: Year Effects
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Figure 3. Cumulative Distribution of Productivity 
(all sectors)
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