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Abstract

In several countries (Chile, Bolivia, Argentina and Peru, among others), power plants are
dispatched according to merit order, i.e., based on the marginal operating costs of the plants.
In this scheme, the plant with the highest marginal cost sets the spot price at which firms trade
the energy requires to fulfill their contracts. The model assumes that plants can operate at any
level up to capacity, whereas real power plants have minimum operating levels. This implies
that a low cost plant might have to reduce its supply in order to accommodate the minimum
operating level of a more expensive power plant. This paper derives the welfare maximizing
price rules in this case and shows that the standard peak load pricing rules no longer apply.
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1 Introduction

Earlier deregulators of electric industries such as Chile, Bolivia and Peru adopted the dispatch and
pricing system developed by Electricité de France (EDF).1 In this approach demand is assumed to
be unresponsive to price, hence the role of the systems operator is to accommodate power supply
to the fixed demand. Plants are dispatched according to the merit order, i.e., they are ranked
according to their marginal operating costs and dispatched in ascending order until demand is
satisfied at the given price. The pricing system has two components. First, plants are paid the price
of energy for their production, which is given by the marginal cost of the most expensive plant
in operation.2 In addition, each plant receives a capacity payment equal to the energy it delivers
at peak demand times a capacity charge which equals the cost of the least expensive means of
expanding capacity. Assuming that demand is inelastic, plants are divisible and no uncertainty, it
can be shown that this system of rewards known as peak-load pricing satisfies the following three
desirable properties (see Turvey (1968)):

• Any plant that is dispatched by the system operator obeys willingly.

• Each plant pays for its operation and investment costs.

• The rules of dispatch minimize the long and short term cost of providing electricity.

These conditions imply that the system can be decentralized, i.e., given these rules of operation,
the market will provide the optimal investment mix that replicates the planner’s solution. There
have been many extensions of peak-load pricing in order to adapt these results to the real world.
Most researchers have explored the consequences of eliminating the assumption of no uncertainty.3

Less work has been done on the effects of eliminating the assumption of perfect divisibility of power
plants.

In this paper we focus on the effects of minimum operational levels (MOLs) below which some
plants cannot operate. This raises the possibility that within certain demand ranges it might be
necessary to reduce the supply of a low operating cost plant, which is replaced by the output
from a higher operating cost plant pinned at its MOL, in order to adjust supply to demand in real
time.4 We analyze the properties of standard peak-load pricing in the presence of MOLs, as we
are interested in finding the reward structure that will provide the welfare maximizing short and
long term signals to generating firms.5

Even though system operators are used to dealing with these problems by using large linear
programming models to find the dispatch schedule that achieves the minimum operational cost,

1See Joskow (1976) for a description of the EDF system.
2To be precise, the marginal cost of energy is normally used only for transactions between generating companies so

that they can satisfy their energy contracts with clients.
3Under conditions of supply uncertainty, it is necessary to include an outage cost. For an extension with uncertainty

in demand and supply, see Chao (1983).
4Other cases in which plants with higher operating costs displace plants with lower operating costs occur when the

former have long ramp up periods so it is not economical to make them run only at peak time or when the former are
forced to operate in order to maintain the integrity of the system.

5The lack of explicit rules leads to implicit contracts between participants. Unfortunately, the informal nature of
these arrangements is a barrier to new entrants.
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there have been no theoretical analysis of the pricing system that provides the welfare maximizing
short and long-run signals to generating companies. A possible explanation is that in state owned
monopolies the assignment of revenues to specific plants is not an issue and because many countries
that have deregulated (and privatized) their industry use bid markets, an environment in which
the problems caused by indivisibilities are less relevant.6 Moreover, these problems are of less
importance in large systems in which plants are small in relation to the size of the system.

We model a simple case with two types of plants, in order to highlight our results. The first
type of plant has a high investment cost but a low operating cost as compared to the second
type of plant. We examine the case in which a high operating cost plant operating at its MOL
displaces part of the production of a low operating cost plant. Hence the marginal cost of the
system corresponds to that of the displaced low operating cost plant, as this is the one that absorbs
small demand fluctuations. The problem is that if we set price equal to this marginal cost, the high
operating cost plant makes losses, violating the first optimal property of peak load pricing. We
show that keeping marginal cost pricing requires capacity charges above the cost of expansion,
because MOLs increase the total cost of the system.

Note that with MOLs the simplicity of the peak-loading pricing rule is lost. First, on occasion
the high operating cost plant must be compelled to operate, violating the condition that any plant
that is dispatched by the system operator obeys willingly. Second, when capacity charges exceed the
cost of expansion, there are incentives for an entrant to supply all demand at peak load using
a high operating cost plant, since it receives the cost of capacity plus the cost of power and an
additional amount that allows it to earn rents. However, this means that there is no supply in low
demand periods (or supply is provided only with high cost plants) since low operating cost plants
would have losses. Hence, implementation of peak-load pricing in the presence of MOLs requires
that the system operator pay capacity payments only to those plants that generate whenever it is
requested. In addition, a mayor problem with MOLs lies in the complexity of the solution, since
the system operator must perform the computations needed to derive the optimal rewards, which
lacks the transparency of the rewards in the idealized peak load pricing model.

In the remainder of this paper we formalize these results in a simple model. In particular, we
find the power payments that lead to the correct short and long term operation when there are
indivisibilities.7

2 The model

In order to simplify the exposition we assume that there are two types of plants. Type 1 plants
have lower operating cost but higher investments cost than type 2 plants. Hence, in general the
former operate as base load plants while the second type operates at peak time. Operating costs

6In the bidding approach (developed first in the UK, and used in many European countries, Colombia, and some
states in the US) generating firms make bids on the amounts and the prices of electricity they are willing to provide
the system. The system operator uses these bids to construct an anergy supply function and sets the dispatch order.
The importance of MOLs in market based systems should be smaller, since firm’s bids should compensate for these
problems.

7The indivisibilities discussed in this paper are different from those studied in the early paper by Williamson (1966).
In that paper, indivisibility meant that plants had a fixed minimum size, but it could produce at any power level. In the
type of indivisibility considered in this paper, the plant cannot operate below a certain power level.
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Figure 1: The problem of minimum operating levels

are c1 < c2 and the unit costs of capacity are given by f1 > f2. The generating capacities of the two
types of plants are given by q̄1 y q̄2. We assume the existence of a minimum size for type 2 plants,
and that demand justifies the installation of one plant. This plant has a minimum operating level
of αq̄2, with 0 ≤ α ≤ 1.

Consider the case in which the existence of the minimum operating level in plant type 2 alters
the merit order of dispatch within some range of demand. For example, in order to satisfy an
increase in demand, the system operator may be forced to dispatch the type 2 plant. Because it
has a MOL, its entry displaces part of the capacity supplied by a lower cost type 1 plant. Figure 1
shows the change in the dispatch order when demand increases from D1 to D2. Suppose that at
price c2, demand is less than q̄1 + αq̄2, but higher than q̄1. When demand is given by curve D2, the
type 2 plant must enter in order to supply the market, but the MOL displaces some of the capacity
of the type 1 plant, which produces at a level q1 < q̄1.

The load duration curve described in figure 2 orders the 8760 hours of the year according to the
demand for energy, which is assumed inelastic. Let D denote the maximum demand, q(t) demand
in the t-th hour with highest demand, and t(q) its inverse. For simplicity we assume that function
t is differentiable, hence t′(q) ≤ 0. In what follows we use the following notation: T = 8760,
q̄0 = q̄1 + αq̄2, T0 = t(q̄0), and T1 = t(q̄1). In the figure, during the (T − T1) hours of low demand
only the type 1 plants operate and spot price equals c1. At T1, these plants are operating at full
capacity and the type 2 plant must begin to provide energy. Given that the type 2 plant is pinned
by its MOL, the type 1 plants must cut back their supply. This inversion of the normal merit order
occurs in the range T0T1. At T0, demand is such that the type 1 plants are operating at full capacity
and the type 2 plant needs to generate above its MOL, so the spot price is given by the cost of the
type 2 plant.

Result 1 A MOL leads to an inversion of the merit order of dispatch.
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Figure 2: A Load duration curve with indivisibilities

2.1 The case with no MOLs

When there are no indivisibilities α = 0, i.e., T0 = T1, then the total cost of plants (investment plus
operational cost) are:8

C1 = c1

∫ T

T1

q(t)dt + c1

∫ T1

0
q̄1dt + f1q̄1

C2 = c2

∫ T1

0

{
q(t) − q̄1

}
dt + f2q̄2

We consider a classical peak-load pricing system.Hence plants receive a payment per unit of energy
equal to the marginal cost of energy. They also receive a capacity payment equal to the marginal
investment cost in type 2 plants f2. The revenues accruing to each type (including the capacity
charges) are:

R1 = c1

∫ T

T1

q(t)dt + c1

∫ T1

0
q̄1dt + f2q̄1

R2 = c2

∫ T1

0

{
q(t) − q̄1

}
dt + f2q̄2

8See Boiteux (1960) for the earliest analysis of the peak-load problem.
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Clearly, the type 2 plants are in a zero-profit equilibrium in all assignments. The type 1 plants are
in equilibrium when R1 = C1, which implies that

T1 =
f1 − f2
c2 − c1

Then the assignment of capacity to type 1 plants is determined using the load duration curve. If
T1 ≤ T, then q̄1 = q(T1), otherwise q̄1 = 0. Boiteux (1960) shows that this decentralized equilibrium
is optimal as it minimizes the total cost of the system.

2.2 The general case with MOLs

When α , 0, we have that T0 < T1. In the interval T0T1, type 1 plants do not operate at full capacity.
Hence, assuming that q̄1 ≥ αq̄2 the total cost of each plant is:

C1 = c1

∫ T0

0
q̄1dt + c1

∫ T1

T0

{
q(t) − αq̄2

}
dt + c1

∫ T

T1

q(t)dt + f1q̄1

C2 = c2

∫ T0

0

{
q(t) − q̄1

}
dt + c2

∫ T1

T0

αq̄2dt + f2q̄2

Then the total cost of the system is:

C = C1 + C2 = c1

∫ T

0
q(t)dt + (c2 − c1)

[∫ T0

0
(q(t) − q̄1)dt +

∫ T1

T0

αq̄2dt
]

+ f1q̄1 + f2q̄2 (1)

Next we derive the capacities q̄1and q̄2 that minimize the total cost of the system and satisfy
demand. Hence we need to impose the restriction q̄1 + q̄2 ≥ D, that is, total capacity must exceed
peak demand D. In the previous analysis we implicitly imposed the condition that the planner does
not operate plant 2 unless necessary, but this was not introduced as a constraint in the maximization
problem. We generalize the presentation and assume that the central planner also decides the time
T1, at which it begins operating the type 2 plant. Thus we need to impose the constraint q(T1) ≤ q̄1,
that is, at the time at which plant 1 has to reduce its load in order to accommodate the entry of
plant 2, demand must be lower or equal to the capacity of the type 1 plant. Letting λ and µ be
the Lagrange multipliers associated to the first and second restriction respectively, the Lagrange
function equals:

L = c1

∫ T

0
q(t)dt+(c2−c1)

[∫ T0

0
(q(t) − q̄1)dt +

∫ T1

T0

αq̄2dt
]
+ f1q̄1+ f2q̄2+λ(D−q̄1−q̄2)+µ(q(T1)−q̄1) (2)

The resulting Kuhn-Tucker conditions are:

∂L
∂q̄1

= (c2 − c1)
[
−T0 + (q(T0) − q̄1 − αq̄2)

dT0

dq̄1

]
+ f1 − λ − µ ≥ 0, q̄1

∂L
∂q̄1

= 0 (3)
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∂L
∂q̄2

= (c2 − c1)
[
(q(T0) − q̄1 − αq̄2)

dT0

dq̄1
+ α(T1 − T0)

]
+ f2 − λ ≥ 0, q̄2

∂L
∂q̄2

= 0 (4)

∂L
∂T1

= (c2 − c1)
[
αq̄2 + (q(T0) − q̄1 − αq̄2)

dT0

dT1

]
+ µq′(T1) ≥ 0, T1

∂L
∂T1

= 0 (5)

∂L
∂λ

= D − q̄1 − q̄2 ≤ 0, λ
∂L
∂λ

= 0 (6)

∂L
∂µ

= q(T1) − q̄1 ≤ 0, µ
∂L
∂µ

= 0 (7)

The first three inequalities can be written as:

∂L
∂q̄1

= (c2 − c1)T0 + f1 − λ − µ ≥ 0, q1
∂L
∂q̄1

= 0 (8)

∂L
∂q̄2

= (c2 − c1)α(T1 − T0) + f2 − λ ≥ 0, q2
∂L
∂q̄2

= 0 (9)

∂L
∂T1

= (c2 − c1)αq̄2 + µq′(T1) ≥ 0, T1
∂L
∂T1

= 0 (10)

Assuming an interior solution q̄2, q̄1 > 0, the first two inequalities become equalities. From
equation (9) follows that λ > 0 and from equation (6) we have that D = q̄1 + q̄2 and therefore
D = q(0) > q̄1. Therefore, from equation (7) we have T1 > 0. Thus equation (10) implies µ > 0,
from which equation (7) is an equality and T1 = t(q̄1). Finally, equation (10) can be rewritten: 9

t′(q̄1)
∂L
∂T1

= (c2 − c1)αq̄2t′(q̄1) + µ = 0 (11)

Using the three equalities (8), (9) and (11) we obtain the optimality condition:

dL
dq̄1

=
∂L
∂q̄1
− ∂L
∂q̄2

= f1 − f2 − (c2 − c1)[T0 + α(T1 − T0) − αq̄2t′(q̄1)] = 0. (12)

As a final result, consider the effects of an increase in the MOL of type 2 plants (an increase in
α) on the optimal mix of investment in the two types of plants. Total differentiation of (12) with
respect to α leads to:

(1 − α)q̄2t′(q̄0) − q̄2t′(q̄1) + (T1 − T0) +
[
(1 − α)2t′(q̄0) + 2αt′(q̄1) − αq̄2t′′(q̄1)

] dq̄1

dα
= 0 (13)

Note that unless function t(q) is strongly concave, an increase in α, the minimum operating level
of type 2 plant, leads to an increase in the optimal investment in type 1 plants.10 The intuition is
quite simple. An increase in the MOL implies that the system will be operating farther away from
the optimal equilibrium without the MOL, and therefore type 2 plants have a higher cost, so that
type 1 plants become relatively more attractive.

9Since λ > 0, equation (6) is also an equality, i.e., it is optimal not to have more capacity than required at peak
demand. Equation (7) states that it is optimal not to start operations in plant 2 unless demand exceeds the capacity of
plant 1.

10Alternatively, the condition can be based on the concavity of q(t).
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2.3 Peak-load pricing

2.3.1 A theoretical solution

Next we extend peak-load pricing to the situation in which MOLs are binding. We begin by setting
the price of energy equal to the marginal cost, which is c2 in the interval 0−T0 and c1 in the interval
T0 − T. Next we determine the capacity charge. Since the λ multiplier represents the cost of a
marginal increase in peak demand, from equation (9) it follows that the capacity charge is equal
to:

f ∗2 = f2 + (c2 − c1)α(T1 − T0) (14)

The MOL, which raises the cost of the system by more than the price of the additional capacity, as
additional type 2 capacity is added. The revenues of the two types of plants can be written as:

R1 = c2

∫ T0

0
q̄1dt + c1

∫ T1

T0

{
q(t) − αq̄2

}
dt + c1

∫ T

T1

q(t)dt + f ∗2 q̄1

R2 = c2

∫ T0

0

{
q(t) − q̄1

}
dt + c1

∫ T1

T0

αq̄2dt + f ∗2 q̄2

which is sufficient for the type 2 firm to break even and recover the losses it makes by operating
between T0 and T1, and being paid c1 per unit of energy delivered. In long run equilibrium, type
1 plants need to break even. Hence

c1

∫ T0

0
q̄1dt + f1q̄1 = c2

∫ T0

0
q̄1dt − f ∗2 q̄1

Rearranging terms, we can rewrite this equality as

f1 − f2 − (c2 − c1)[T0 + α(T1 − T0)] = 0 (15)

However this solution is not optimal, as it differs from the optimality condition (13). The
reason is quite intuitive. Observe that at any time different from T1 and 0 (peak demand), the only
effect of a marginal increase in demand is to increase operational costs. At T1, however, a marginal
increase in demand lengthens the period in which plant 2 operates at its technical minimum by
t′(q̄1), and this leads to an increase in on total costs of −(c2 − c1)αq̄2t′(q̄1) > 0. Formally, since the µ
multiplier represents the cost of a marginal increase in demand at T1, from equation (12) it follows
it is necessary to impose a capacity charge equal to:

µ = −(c2 − c1)αq̄2t′(q̄1), (16)

which should be paid only to the type 1 plants as these are the only plants operating at T1. As we
can see by comparing (12) and (15) this amount is sufficient to provide the right investment signals
for type 1 plants.
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Result 2 Peak-load pricing with a MOL requires a capacity charge that is higher than without a MOL and
an additional capacity charge paid to low cost firms.

Observe that when there is no indivisibility (α = 0), this second capacity charge (16) disappears
and the capacity charge (14) becomes the standard capacity charge.

2.3.2 Implementing peak-load pricing

In this section we show that peak-load pricing is incompatible with a decentralized system when
there are MOLs. To see this point, recall that in the interval T0T1 plant 2 operates at a loss. In the
previous section we showed that it was possible to compensate this plant via a capacity charge
that is higher than the marginal cost of capacity. Note however that this requires that plant 2 be
compelled to operate, violating the condition that any plant that is dispatched by the system operator
obeys willingly, i.e., this is not a decentralized solution. There is an additional problem: at the time
of peak demand, users are required to pay the operational cost of the high cost plants, plus the cost
of capacity (peak demand × investment cost of the type 2 plant), plus a surcharge to compensate
plant for receiving only c1 while operating in T0T1. Hence there there is an incentive for an entrant
to supply all demand at peak load with type two plants, receive the cost of capacity plus the cost
of power, plus the additional surcharge (which would give them rents). The problem, of course is
that this implies that low cost plants make losses and would exit.

Result 3 Optimal peak-load pricing with a MOL cannot be decentralized.

However, peak-load pricing can be implemented by introducing the rule that capacity will
be paid only to plants that generate whenever they are requested to do so. Hence explicit the
payment rules would solve the problem, but violate the condition that plants are always willing
to generate power when requested. An additional problem lies in the complexity of the solution,
which requires the explicit computation of capacity charges by the system operator, negating one
of the advantages of the peak load pricing rule in the absence of MOLs.

Up to now we have imposed that the price of energy be set equal to the marginal operational
cost. We impose this requirement because if demand were elastic, this would be the requirement
of an efficient pricing scheme. In our model however, the load duration curve is independent of
price, as is usual in this type of analysis, so the use of marginal cost pricing is not really necessary
and is external to the model. Therefore we might as well have incorporated the additional cost
caused by the MOL into the price of energy and kept the original capacity charge as the marginal
cost of capacity. For instance, we can consider an energy charge equal to c2 in period T0T1. In this
case an energy charge above c1 is required in T1T2 in order to achieve the optimal solution. The
required energy charge is:

w = c1 + (c2 − c1)

∫ T1

T0

[
αD − q(t)

]
dt − αq̄2q̄1t′(q̄1)

∫ T
T1

q(t)dt
. (17)

However, this solution also faces implementation problems. Note that in the period T0T type
1 plants receive more than their marginal cost (since unless t(q) is highly concave, w > c1). This
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implies that all these plants would like to generate at full capacity, and hence supply would exceed
demand. Hence, the effective demand faced by these plants must be assigned proportionally to
the capacity of each plant.

3 Conclusions

This paper has shown that when plants have minimum operating levels, the standard peak-load
pricing system must be modified in order to achieve the (long run) optimal investment mix between
different plants. It has also shown that the solution cannot be implemented via a decentralized
mechanism. In the special case where demand is inelastic, the optimal solution can also be
implemented by raising the energy price.

MOLs are important in deregulated marginal cost dispatch systems, where the use of the
standard peak-load pricing formulas can lead to inefficiencies. The fact that the legislation in
the countries that use peak load pricing does not cover these and other imperfections means that
firms must use informal methods of settling these problems. However, this also implies that a
new entrant faces unwritten rules, which might be one of the reasons for the lack of entry into the
electric markets in these countries.

There are other problems that involve similar issues and which could be analyzed by analogous
methods: for example, the long ramp-up times of some plants mean that high cost plants are
sometimes required to operate as base-load plants, creating inversions in the merit order. We have
made a strong simplification in our analysis, as we have assumed that demand is constant and
does not respond to the existence of an additional power charge. Removing this restriction is
another topic for future research.11

11As in Oren et al. (1985).
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