INCENTIVES AND IMPLEMENTATION IN MARRIAGE MARKETS WITH EXTERNALITIES

MARÍA HAYDÉE FONSECA-MAIRENA Y MATTEO TRIOSSI
Incentives and implementation in marriage markets with externalities

María Haydée Fonseca-Mairena† Matteo Triossi‡

June 17, 2019

Abstract

We study the implementability of stable correspondences in marriage markets with externalities. We prove that, contrary to what happens in markets without externalities, no stable revelation mechanism makes a dominant strategy for the agents on one side of the market to reveal their preferences. However, the stable correspondence is implementable in Nash equilibrium.

Economic Literature Classification Numbers: C72, C78, D62, D78.

Keywords: Marriage market with externalities; Incentives; Implementation.

*This paper is a modified version of the third chapter of the PhD dissertation of the first author at University of Chile. We thank Juan Pablo Torres-Martínez for useful comments. Fonseca-Mairena and Triossi acknowledge financial support from the Institute for Research in Market Imperfections and Public Policy, ICM IS130002, Ministerio de Economía, Fomento y Turismo. Fonseca-Mairena acknowledges financial support from Millenium Nucleus of Social Development, Ministerio de Economía, Fomento y Turismo.

†Department of Economics and Management, Universidad Católica del Maule, San Miguel 3605, Talca, Chile. E-mail: mfonseca@ucm.cl.

‡Corresponding author. Center for Applied Economics, Department of Industrial Engineering, University of Chile, Beaucheff 851, 8370456, Santiago, Chile. E-mail: mtriossi@dii.uchile.
1 Introduction

In this paper we study the implementation of stable correspondences in one-to-one matching markets, or marriage markets, with externalities. In those markets agents care not only about their partner but also about the partners of the other agents. Relevant examples include labor markets in which workers care about their colleagues, school choice problems in which families care about their children’s classmates and partner dance competitions in which each couple care about how the other couples are formed.

A focal concept in matching theory is stability. A stable matching is defined by two requirements. The first one is individual rationality: no agent prefers to stay unmatched rather than accepting her/his assigned partner. The second condition is that the matching must not be blocked by a pair. That is, no pair of agents would both prefer to be matched together rather than to accept their allocation. Stability plays a central role in the success of centralized mechanisms (see, Abdulkadiroğlu and Sönmez, 2013 and Roth and Sotomayor, 1990). Defining stability in markets with externalities is not straightforward. Indeed, it has to take into account the expectations of a potential deviating agent or pair about the behavior of the other agents (see Bando and Muto, 2016). We consider a concept of stability based on prudent expectations. We assume that a pair blocks matching μ only if both agents strictly prefer any matching in which they are together to matching μ. This concept of stability, introduced by Sasaki and Toda (1996), guarantees the existence of stable matchings in marriage markets with externalities.

We start studying direct mechanisms and uncover a difference with respect to markets without externalities. In those markets the woman-optimal (resp. man-optimal) stable mechanism makes a dominant strategy for all women (resp. men) reveal their preferences (see Roth and Sotomayor, 1990). Instead, when there are externalities, there exists no stable revelation mechanism which makes truth-telling a dominant strategy for all women (resp.
men). In particular, no stable revelation mechanism makes truth-telling a dominant strategy for all agents.

We then consider Nash equilibria \((NE, \text{from now on})\) of preference revelation games and prove that, under a mild restriction, any stable revelation mechanism implements the set of individually rational matchings in \(NE\), extending the findings by Alcalde (1996) (see also Shin and Suh, 1996).

Finally, we consider general mechanisms and investigate the implementation of stable correspondences in \(NE\) (see Maskin, 1999). Kara and Sönmez (1996) prove that, in a model without externalities, the stable correspondence is implementable in \(NE\). We follow their same strategy and employ the characterization of Nash implementable allocations by Yamato (1992) to prove that the stable correspondence is implementable in \(NE\) if there are externalities.

The structure of the paper is as follows. Section 2 introduces the model. Section 3 considers implementation through stable revelation mechanism the results. Section 4 considers implementation in \(NE\) through general mechanisms. Section 5 concludes.

2 The model

There are two disjoint sets of women and men, \(W\) and \(M\), respectively. Set \(N = W \cup M\). A matching is a function \(\mu : W \cup M \to W \cup M\) such that

(i) \(\mu(w) \in M \cup \{w\}\) for all \(w \in W\), \(\mu(m) \in W \cup \{m\}\) for all \(m \in M\) and

(ii) \(\mu^2(i) = i\) for all \(i \in N\).

We denote a matching \(\mu\) by a set of pairs and single agents. By \(\mu = \{(w_1,m_1),(w_2,m_2),\ldots,(w_r,w_r),i_1,i_2,\ldots,i_k\}\), we denote matching \(\mu\) in which \(\mu(w_l) = m_l\) and \(\mu(i_l) = i_l\) for all \(l\). Let \(A\) be the set of matchings. For each \((w,m) \in W \times M\), let \((w,m) = \{\mu \in A : \mu(w) = m\}\). Similarly, for each \(i \in N\) let \(A(i) = \{\mu \in A : \mu(i) = i\}\).

Agent \(i\) has strict, complete and transitive preferences over \(A\), denoted by

1Function \(\mu^2\) is defined by \(\mu^2(i) = \mu(\mu(i))\).
Let R_i be the weak preference relation associated to P_i, which is $\mu R_i \mu'$ if either $\mu P_i \mu'$ or $\mu = \mu'$ for every $\mu, \mu' \in \mathcal{A}$. By \mathcal{P} we denote the set of strict preferences over \mathcal{A}. A marriage market with externalities is a triple (W, M, P), where $P \in \mathcal{P}^{\mathbb{N}}$.

We represent the preferences of agent $i \in \mathbb{N}$ by a list of matchings. For example, $P_i : \mu_1, \mu_2, ..., \mu_k, ...$ means that $\mu_j P_i \mu_k$ for each $j < k$.

We employ the concept of stability introduced by Sasaki and Toda (1996). A matching μ is individually rational if there is no $i \in \mathbb{N}$ such that $\mu' P_i \mu$ for all $\mu' \in A(i)$. A pair $(w, m) \in W \times M$ blocks μ if $\mu' P_w \mu$ and $\mu' P_m \mu$ for all $\mu' \in A(w, m)$. The matching μ is stable if it is individually rational and no pair blocks it. Let $\mathcal{S}(P)$ be the set of stable matchings under P. We have $\mathcal{S}(P) \neq \emptyset$ for all $P \in \mathcal{P}^{\mathbb{N}}$.

Let $\mathcal{D} \subseteq \mathcal{P}^{\mathbb{N}}$. A social choice correspondence $\Gamma : \mathcal{D} \Rightarrow \mathcal{A}$ maps profiles of preferences into subsets of matchings. The stable correspondence is defined by $\Gamma(P) = \mathcal{S}(P)$ for all $P \in \mathcal{P}^{\mathbb{N}}$. A mechanism is a pair (S, g) where $S = \prod_{i \in \mathbb{N}} S_i$, S_i is the strategy space of agent $i \in \mathbb{N}$ and $g : S \rightarrow \mathcal{A}$ is the outcome function. In a revelation mechanism, $S \subseteq \mathcal{P}^{\mathbb{N}}$. In a stable revelation mechanisms $g(P) \subseteq \mathcal{S}(P)$ for all $P \in \mathcal{D}$. Each mechanism (S, g) induces a strategic form game, (W, M, P, S, g). Let $NE(P, S, g)$ denote the set of pure strategy Nash equilibria of game (W, M, P, S, g). Mechanism (S, g) implements Γ if $g(NE(P, S, g)) = \Gamma(P)$ for all $P \in \mathcal{D}$.

3 Revelation mechanisms

We start by considering dominant strategies. Without externalities, the woman-optimal stable mechanism makes truth-telling a dominant strategy for each woman. On the contrary, in markets with externalities, no stable revelation mechanism makes truth-telling a dominant strategy for the agents.
Proposition 1 Let $D = \mathcal{P}^{[N]}$. There is no stable revelation mechanism in which reporting the true preferences is a dominant strategy for women.

Proof. The proof is by means of an example. Let $W = \{w_1, w_2\}$ and let $M = \{m_1, m_2\}$. There are seven matchings: $\mu_1 = \{(w_1, m_1), (w_2, m_2)\}$, $\mu_2 = \{(w_1, m_1), w_2, m_2\}$, $\mu_3 = \{(w_2, m_1), (w_1, m_2)\}$, $\mu_4 = \{(w_2, m_1), w_1, m_2\}$, $\mu_5 = \{(w_1, m_2), w_2, m_1\}$, $\mu_6 = \{(w_2, m_2), w_1, m_1\}$ and $\mu_7 = \{w_1, w_2, m_1, m_2\}$. Consider their following preferences:

$$P_{w_1} : \mu_1, \mu_4, \mu_5, \mu_2, \mu_3, \mu_7; \quad P_{w_2} : \mu_5, \mu_2, \mu_1, \mu_3, \mu_4, \mu_6, \mu_7;$$

$$P_{m_1} : \mu_1, \mu_5, \mu_6, \mu_4, \mu_7, \mu_2, \mu_3; \quad P_{m_2} : \mu_4, \mu_1, \mu_2, \mu_3, \mu_5, \mu_6, \mu_7.$$

We have $S(P) = \{\mu_1, \mu_4, \mu_5, \mu_6\}$.\(^4\) Let φ be a stable revelation mechanism, then $\varphi(P) \in S(P)$. Consider the following cases.

(i) $\varphi(P) = \mu_5$. Let $P'_{w_1} : \mu_1, \mu_4, \mu_6, \mu_7, \ldots$ Let $P' = (P'_{w_1}, P_{-w_1})$, we have $S(P') = \{\mu_1, \mu_4, \mu_6\}$.\(^5\) Since $\mu' P_{w_1} \mu_5$ for all $\mu' \in S(P')$, woman w_1 has incentives to misrepresent her preferences.

(ii) Let $P''_{w_2} = \mu_2, \mu_5, \mu_7, \ldots$. Let $P'' = (P''_{w_2}, P_{-w_2})$, we have $S(P'') = \{\mu_5\}$.\(^6\) Since $\mu_5 P_{w_2} \mu'$ for all $\mu' \in \{\mu_1, \mu_4, \mu_6\}$, woman w_2 has incentives to misrepresent her preferences.

The argument is easily generalized to any W and M.\(^7\) Then, there is no stable revelation mechanism in which truth-telling is a dominant strategy for women. ■

\(^4\)Matchings μ_2 and μ_3 are not individually rational for m_1, μ_7 is blocked by $\{w_1, m_2\}$ and $\{w_2, m_2\}$.

\(^5\)Matchings μ_2, μ_3, μ_5 are not individually rational for w_1, μ_7 is blocked by $\{w_2, m_2\}$.

\(^6\)Matchings $\mu_1, \mu_3, \mu_4, \mu_6$ are not individually rational for w_2, μ_2 is not individually rational for m_1, μ_7 is blocked by $\{w_1, m_2\}$.

\(^7\)The proof is available upon request.
Consider the domain of preferences where each agent ranks consecutively all matchings where she/he is unmatched. Formally, let

$$\tilde{P} = \{ P \in P^{[N]} : \forall i \in N, \nexists \mu', \mu'' \in A(i), \mu \notin A(i), \mu' P_i \mu P_i \mu'' \}.$$

We next characterize the incentive properties of stable revelation mechanisms.

Proposition 2 Let φ be a stable revelation mechanism in the marriage market with externalities. If $D \subseteq P^{[N]}$, all NE outcomes are individually rational. In addition, if $D = \tilde{P}$, φ implements the individually rational correspondence in NE.

Proof. We first prove that any NE outcome is individually rational for all agents. By the definition of a stable matching, $\varphi(P)$ is individually rational for all $P \in P^{[N]}$. In particular, if $\varphi(P')$ is not individually rational for agent i in market (W, M, P), then agent i has a profitable deviation: to state her/his true preference P_i, then P' is not a NE.

Assume $D = \tilde{P}$. Let μ be an individually rational matching in market (W, M, P). We will prove that μ is a NE outcome. For all $i \in N$, consider preference P'_i such that (i) $\mu' P'_i \mu''$, $\forall \mu' \in A(i)$, $\forall \mu'' \in A(i, j)$ with $j \notin \{i, \mu(i)\}$; (ii) if $\mu(i) \neq i$ then $\mu'' P'_i \mu' \forall \mu' \in A(i)$, $\forall \mu'' \in A(i, \mu(i))$. Let $P' = (P'_i)_{i \in N}$. Then $\{\mu\} = S(P')$ and P' is a NE.

4 General mechanisms

Now we study the implementation of the stable correspondence S in NE. We first introduce additional notation. Let $L(\mu, R_i) = \{ \mu' \in A : \mu R_i \mu' \}$ be the lower contour set of $\mu \in A$ at R_i. A preference profile P' is a monotonic transformation of P at $\mu \in A$ if $L(\mu, R_i) \subseteq L(\mu, P'_i)$ for all $i \in N$. A social choice correspondence Γ is monotonic if, for all $P, P' \in D$ and all $\mu \in A$
such that \(\mu \in \Gamma(P) \) and \(P' \) is a monotonic transformation of \(P \) at \(\mu \), then \(\mu \in \Gamma(P') \). Let \(i \in N \) and \(X \subseteq \mathcal{A} \). A matching \(\mu \in X \) is essential for agent \(i \in N \) in the set \(X \) for \(\Gamma \) if \(\mu \in \Gamma(P) \) for some preference profile \(P \) such that \(L(\mu, R_i) \subseteq X \). The set of essential matchings is denoted by \(\text{Ess}(\Gamma, i, X) \).

Correspondence \(\Gamma \) is essentially monotonic if for all \(P, P' \in \mathcal{D} \), for all \(\mu \in \Gamma(P) \), if \(\text{Ess}(\Gamma, i, L(\mu, R_i)) \subseteq L(\mu, R'_i) \) for all \(i \in N \), then \(\mu \in \Gamma(P') \).

The domain \(\mathcal{P}[N] \) satisfies Condition \(D \) in Yamato (1992).\(^8\) Then, \(\Gamma : \mathcal{P}[N] \Rightarrow \mathcal{A} \) is implementable in \(NE \) if and only if \(\Gamma \) is essentially monotonic, from Yamato (1992, Corollary, p. 490).\(^9\) Then, we prove that \(\mathcal{S} \) is implementable in \(NE \), by proving that \(\mathcal{S} \) is essentially monotonic (see Kara and Sönmez, 1996). We start proving that the stable correspondence is monotonic.

Lemma 1 The stable correspondence \(\mathcal{S} \) is monotonic.

Proof. Let \(P \in \mathcal{P}[N] \) and assume \(\mu \in \mathcal{S}(P) \). Let \(P' \) be a monotonic transformation of \(P \) at \(\mu \). We prove by contradiction that \(\mu \in \mathcal{S}(P') \). Assume \(\mu \) is not stable under \(P' \). There exists an agent or a couple which blocks the matching \(\mu \) under \(P' \). Since \(P' \) is a monotonic transformation of \(P \) at \(\mu \), for each \(i \in N \), \(\mu'P'_i\mu \) implies \(\mu'P_i\mu \). Then, \(\mu \) is blocked in market \((W, M, P) \), which yields a contradiction. \(\blacksquare \)

Correspondence \(\mathcal{S} \) does not satisfy the “no veto-power” condition (see Maskin, 1999) so Lemma 1 does not imply the Nash implementability of \(\mathcal{S} \), but it is an important tool in the proof of our main result. Before concluding, we prove an additional result.

Lemma 2 For all \(P \in \mathcal{P}[N], \mu \in \mathcal{S}(P) \) and \(i \in N \):

\[
\text{Ess}(\mathcal{S}, i, L(\mu, R_i)) = L(\mu, R_i).
\]

\(^8\)A domain \(\mathcal{D} \subseteq \mathcal{P}[N] \) satisfies condition \(D \) if, for all \(\mu \in \mathcal{A}, P \in \mathcal{D}, i \in N \) and \(\mu' \in L(\mu, R_i) \), there exists \(P' \in \mathcal{D} \) such that \(L(\mu, R_i) = L(\mu', R'_i) \) and for all \(j \neq i, L(\mu', R'_j) = \mathcal{A} \).

\(^9\)See also Danilov (1992).
Proof. Let $i \in N$, $P \in \mathcal{P}^{|N|}$, $\mu \in \mathcal{S}(P)$. The proof of is in two steps.

1. We prove $\text{Ess}(\mathcal{S}, i, L(\mu, R_i)) \subseteq L(\mu, R_i)$. Assume $\mu' \in \text{Ess}(\mathcal{S}, i, L(\mu, R_i))$. By definition of $\text{Ess}(\mathcal{S}, i, L(\mu, R_i))$, there exists a preference profile $P' \in \mathcal{P}^{|N|}$ such that $L(\mu', R'_i) \subseteq L(\mu, R_i)$. In particular, $\mu' \in L(\mu, R_i)$.

2. We prove $L(\mu, R_i) \subseteq \text{Ess}(\mathcal{S}, i, L(\mu, R_i))$. Let $\mu' \in L(\mu, R_i)$. Notice that there exists $\mu^* \in L(\mu, R_i)$ such that $\mu^*(i) = i$, otherwise μ would not be individually rational for i. Consider the strategy profile P' such that (i) $\mu'P'_j\mu''$ for all $\mu'' \neq A \setminus \{\mu'\}$ and all $j \neq i$; (ii) $\mu''P'_i\mu'P'_i\mu^*$ for all $\mu'' \in A \setminus \{\mu', \mu^*\}$. By (ii) $\mu^* \in L(\mu', R'_i) \subseteq L(\mu, R_i)$. By (i) μ' is individually rational for all agents $j \neq i$ and no pair (w, m) blocks μ' under P'. By (ii), μ' is individually rational for i under P'. Then $\mu' \in \mathcal{S}(P')$. Then, $\mu' \in \text{Ess}(\mathcal{S}, i, L(\mu, R_i))$.

Applying Lemmas 1 and 2, we prove the main result of the paper.

Theorem 1 The stable correspondence \mathcal{S} is implementable in NE.

Proof. The monotonicity of \mathcal{S} (Lemma 1) implies that it is essentially monotonic by Lemma 2. Then, the result follows from Yamato (1992).

5 Concluding Remarks

We have studied incentive problems in marriage markets with externalities and proved the implementability of the stable correspondence in NE. Future research should establish the possibility of implementing stable matchings through simple mechanisms.
References

2019

344. Incentives and implementation in marriage markets with externalities
Maria Haydée Fonseca-Mairena y Matteo Triossi

343. Deconstructing Job Search Behavior
Stefano Banfi, Sekyu Choi y Benjamín Villena-Roldán

2018

Ana Maria Montoya, Carlos Noton y Alex Solis

341. The Joy of Flying: Efficient Airport PPP Contracts
Eduardo Engel, Ronald Fischer y Alexander Galetovic

340. Wealth Inequality and the Political Economy of Financial and Labor Markets
Ronald Fischer y Diego Huerta

339. Centralized Course Allocation
Antonio Romero-Medina y Matteo Triossi

338. Identifying Food Labeling Effects on Consumer Behavior
Sebastián Araya, Andrés Elberg, Carlos Noton y Daniel Schwartz

337. Cooperatives vs Traditional Banks: The impact of Interbank Market Exclusion
Raphael Bergoeing y Facundo Piguillem

336. Sorting On-line and On-time
Stefano Banfi, Sekyu Choi y Benjamín Villena-Roldán

335. Investment Opportunities and Corporate Credit Risk
Eugenia Andreasen, Patricio Valenzuela

2017

334. Returns to Higher Education: Vocational Education vs College
Ana Maria Montoya, Carlos Noton y Alex Solis

333. Group strategy-proof stable mechanisms in priority-based resource allocation under multi-unit demand: a note
Antonio Romero-Medina y Matteo Triossi

332. (Group) Strategy-proofness and stability in many-to-many matching markets
Antonio Romero-Medina y Matteo Triossi
331. Longevity, Human Capital and Domestic Investment
Francisco Parro y Francisco Szederkenyi y Patricio Valenzuela

330. The Inequality-Credit Nexus
Ronald Fischer, Diego Huerta y Patricio Valenzuela

329. Inequality, Finance, and Growth
Matías Braun, Francisco Parro y Patricio Valenzuela

328. Take-it-or-leave-it contracts in many-to-many matching markets
Antonio Romero-Medina y Matteo Triossi

2016

327. Do High-Wage Jobs Attract more Applicants?
Directed Search Evidence from the Online Labor Market
Stefano Banfi y Benjamín Villena-Roldán

326. Economic Performance, Wealth Distribution and Credit Restrictions with Continuous Investment
Ronald Fischer y Diego Huerta

325. Motivating with Simple Contracts
Juan F. Escobar y Carlos Pulgar

324. Gone with the wind: demographic transitions and domestic saving
Eduardo Cavallo, Gabriel Sánchez y Patricio Valenzuela

2015

323. Colaboración Público-Privada en infraestructuras: Reforma del sistema concesional español de autopistas de peaje
Eduardo Engel, Ronald Fischer, Alexander Galetovic y Ginés de Rus

322. The Joy of Flying: Efficient Airport PPP contracts
Eduardo Engel, Ronald Fischer y Alexander Galetovic

321. On the welfare cost of bank concentration
Sofía Bauducco y Alexandre Janiak

320. Banking Competition and Economic Stability
Ronald Fischer, Nicolás Inostroza y Felipe J. Ramírez

319. Persistent Inequality, Corruption, and Factor Productivity
Elton Dusha

318. Reputational Concerns in Directed Search Markets with Adverse Selection
Elton Dusha

Eduardo Engel Ronald Fischer Alexander Galetovic
316. Inequality and Private Credit
Diego Huerta, Ronald Fischer y Patricio Valenzuela

315. Financial Openness, Domestic Financial Development and Credit Ratings
Eugenia Andreasen y Patricio Valenzuela

314. The Whole is Greater than the Sum of Its Parts: Complementary Reforms to Address Microeconomic Distortions
(Por aparecer en The World Bank Economic Review)
Raphael Bergoeing, Norman V. Loayza y Facundo Piguillem

313. Economic Performance, Wealth Distribution and Credit Restrictions under variable investment: The open economy
Ronald Fischer y Diego Huerta

312. Destructive Creation: School Turnover and Educational Attainment
Nicolás Grau, Daniel Hojman y Alejandra Mizala

311. Cooperation Dynamic in Repeated Games of Adverse Selection
Juan F. Escobar y Gastón Llanes

310. Pre-service Elementary School Teachers’ Expectations about Student Performance: How their Beliefs are affected by Mathematics Anxiety and Student Gender
Francisco Martínez, Salomé Martínez y Alejandra Mizala

309. The impact of the minimum wage on capital accumulation and employment in a large-firm framework
Sofía Bauducco y Alexandre Janiak

2014

Matteo Triossi

2013

305. The African Financial Development and Financial Inclusion Gaps
Franklin Allen, Elena Carletti, Robert Cull, Jun “Qj” Qian, Lemma Senbet y Patricio Valenzuela

304. Revealing Bargaining Power through Actual Wholesale Prices
Carlos Noton y Andrés Elberg

303. Structural Estimation of Price Adjustment Costs in the European Car Market
Carlos Noton

302. Remedies for Sick Insurance
Daniel McFadden, Carlos Noton y Pau Olivella

301. Minimum Coverage Regulation in Insurance Markets
Daniel McFadden, Carlos Noton y Pau Olivella
300. Rollover risk and corporate bond spreads
Patricio Valenzuela

299. Sovereign Ceilings “Lite”? The Impact of Sovereign Ratings on Corporate Ratings
Eduardo Borensztein, Kevin Cowan y Patricio Valenzuela

298. Improving Access to Banking: Evidence from Kenya
F. Allen, E. Carletti, R. Cull, J. “Qi” Qian, L. Senbet y P. Valenzuela

Ronald Fischer y Patricio Valenzuela

296. Banking Competition and Economic Stability
Ronald Fischer, Nicolás Inostroza y Felipe J. Ramírez

295. Trust in Cohesive Communities
Felipe Balmaceda y Juan F. Escobar

Matteo Triossi, Patricio Valdivieso y Benjamín Villena-Roldán

2012

293. Participation in Organizations, Trust, and Social Capital Formation: Evidence from Chile
Patricio Valdivieso - Benjamín Villena-Roldán

292. Neutral Mergers Between Bilateral Markets
Antonio Romero-Medina y Matteo Triossi

291. On the Optimality of One-size-fits-all Contracts: The Limited Liability Case
Felipe Balmaceda

290. Self Governance in Social Networks of Information Transmission
Felipe Balmaceda y Juan F. Escobar

289. Efficiency in Games with Markovian Private Information
Juan F. Escobar y Juuso Toikka

288. EPL and Capital-Labor Ratios
Alexandre Janiak y Etienne Wasmer

Sofía Bauducco y Alexandre Janiak

2011

286. Comments on Donahue and Zeckhauser: Collaborative Governance
Ronald Fischer

Benjamín Villena-Rodán y Cecilia Ríos-Aguilar

* Para ver listado de números anteriores ir a http://www.cea-uchile.cl/.