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Abstract

This paper considers a general optimal auction problem, with many goods and with

a buyer’s utility that can depend non-linearly in his type. We point out that incentive

compatibility constraints may be binding even if virtual utilities are strictly increasing

in the buyer’s type. More importantly, optimal mechanisms may involve randomizations

between different allocations.
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1. Introduction

The literature on revenue maximizing mechanisms is not only central to auction theory, but

to economic theory in general. In the seminal contributions of Myerson (1981) and Riley

and Samuelson (1981) two key features appear: first, that revenue maximizing mechanisms

are deterministic, in the sense that either a good is obtained with probability one by a buyer,

or it is kept by the seller, and, second, that incentive constraints essentially disappear if the

virtual utilities, (utility minus information rents), of obtaining a good are strictly monotonic

in a buyer’s type.

Our findings contrast both these fundamental features of those papers. We consider

a general selling problem, with many goods and where a buyer’s utility may depend non-

linearly on his type. First we establish that incentive compatibility can be binding even

if virtual utilities are strictly monotonic in type. Then we show that when the incentive

constraints bind, optimal auctions may involve randomizations between different allocations.

When incentive constraints bind despite monotone virtual utilities, previous methods

of solving for a revenue maximizing mechanism fail because they rely on making virtual

utilities monotonic, (“ironing”). We propose a solution method and with its help show that

an optimal mechanism may involve randomizations over different goods. In some sense, a

certain range of consumer types will be offered a random “bundle” of goods. Our method

has the advantage that it does not require mechanisms to be differentiable because it does

not rely on standard variational methods, (for instance the use of Hamiltonians).1 It can

be also used when the designer is interested in efficiency maximizing, instead of revenue

maximizing mechanisms. All the analysis goes though by replacing virtual utilities with

actual utilities.

The fact that randomizations are a feature of revenue maximizing mechanisms can be

viewed as quite surprising given that the buyers are risk neutral and types are single dimen-

sional. In the continuum varieties model of Maskin and Riley (1989), the authors devote

Section 5, to illustrate why randomizations will not be a feature of revenue maximizing

auctions. Also Thanassoulis (2004) stresses that the randomizations in his environment are

due to the fact that types are multi-dimensional. Why then do they appear in our environ-

ment? The reason is that we are considering a finite number of different products, and we

allow for utilities to be non-linear in types. The feature of randomization is absent in the

extreme cases of one and a continuum of identical goods, but it can appear in intermediate
1See for instance Lollivier and Rochet (1983).
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cases where there is some discreteness in the number of goods and goods are heterogeneous.

2. The model

A risk neutral revenue-maximizer seller owns N indivisible, possibly heterogeneous, objects

that are of 0 value to her and faces one risk neutral buyer, who maximizes expected surplus.

The seller can bundle these N objects in any way she sees fit. An allocation z ∈ Z is an

assignment of objects to the buyer and to the seller. It is a vector with N components,

where each component stands for an object and specifies who gets it. Therefore, the set of

possible allocations is finite and given by Z ⊆ 2N . The buyer’s valuation from allocation z

is denoted by uz(v) and it depends on a preference parameter v which is private information

and is distributed on V = [v, v̄], according to a distribution F that has a strictly positive

and continuous density f . We assume that uz(·) is increasing, convex and differentiable in

v for all z. We impose no restrictions on how u depends on z. The buyer’s payoff from not

obtaining any objects is normalized to zero.

By the revelation principle we know that the seller can without loss of generality restrict

attention to incentive compatible direct revelation mechanisms.

A direct revelation mechanism, (DRM), M = (p, x) consists of an assignment rule

p : V −→ ∆(Z) and a payment rule x : V −→ R. Given a report v, the assignment

rule specifies the probability of each allocation and the payment rule specifies the expected

payment. We denote by pz(v) the probability that allocation z is implemented when the

report is v.

The interim expected utility of type v buyer when he participates and declares v′ is

U(v, v′; (p, x)) =
∑
z∈Z

pz(v′)uz(v)− x(v′).

Definition 1. We say that a mechanism (p, x) is feasible iff for all v, v′ ∈ V it satisfies

(IC) “incentive constraints,” U(v, v; (p, x)) ≥ U(v, v′; (p, x))

(PC) “participation constraints” U(v, v; (p, x)) ≥ 0

(RES) “resource constraints”2
∑
z∈Z

pz(v) = 1, pz(v) ≥ 0

2Notice that Z contains the allocation where the seller keeps all the objects, thus
P

z∈Z

pz(c) = 1.
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With the help of the revelation principle the seller’s problem can be written as

max
(p,x)

∫
V

x(v)f(v)dv (1)

subject to (p, x) being “feasible.”

Given a DRM (p, x) a buyer’s maximized payoff is given by

U(v) ≡ max
v′

∑
z∈Z

pz(v′)uz(v)− x(v′),

and it is convex, since it is a maximum of convex functions. It is then easy to prove that

its derivative

P (v) ≡
∑
z∈Z

pz(v)
∂uz(v)

∂v
(2)

(more precisely a selection from its subgradient, which is single valued almost surely) is

increasing. Necessary and sufficient conditions for incentive compatibility can then be ob-

tained with relatively standard arguments, (see for instance Figueroa and Skreta (2006a)),

and are stated in the following Lemma.

Lemma 1 A mechanism (p, x) is incentive compatible iff

P (v′) ≥ P (v) for all v′ > v

U(v) = U(v) +
v∫
v

P (s)ds for all v ∈ V. (3)

Then, letting

Jz(v) ≡ uz(v)− [1− F (v)]
f(v)

∂uz(v)
∂v

denote the virtual utility of allocation z, and using standard arguments, we can rewrite the

seller’s problem as in the next lemma

Lemma 2 The seller’s problem can be reduced to find an allocation rule p that solves

max
(p,x)

∫
V

∑
z∈Z

pz(v)Jz(v)f(v)dv (4)

s.t. P (v) increasing in v∑
z∈Z

pz(v) = 1 and pz(v) ≥ 0.

In the next section we proceed with the analysis of this problem.
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3. Analysis of the Problem

3.1 Incentive Constraints May Bind Despite Monotone Virtual Utilities

The solution of the program stated in (4) is straightforward if the assignment rule obtained

by pointwise maximization of
∫
V

∑
z∈Z

pz(v)Jz(v)f(v)dv also satisfies the requirements of P

being increasing. Following Myerson (1981) we will refer to this as the regular case. On the

other hand, in the general case, pointwise optimization will lead to a mechanism that may

not be feasible.

In Myerson (1981), pointwise optimization will lead to a feasible solution if the virtual

utility is increasing in a buyer’s valuation.3 For the cases where the virtual utility is not

increasing, Myerson (1981) presents a clever rewriting of the objective function in terms of

“ironed” virtual utilities. He shows that pointwise maximization of this artificial objective

function leads to a feasible solution and moreover the solution of this artificial program

solves the original one as well. Unfortunately, this technique does not work here, because

as we will now argue, incentive compatibility may be violated even if virtual utilities are

strictly increasing and thus “ironed”.

Pointwise optimization assigns probability one to the allocation with the highest virtual

utility at each vector of types. Recalling that IC requires P to be increasing in v we

notice that along a region of types where the same allocation z is selected throughout,

P (v) = ∂uz(v)
∂v ≡ P z(v) is increasing by the convexity of uz(·). Incentive compatibility can

be violated though when the seller wishes to switch, say, from allocation z1 to z2. At such

a point, call it v∗, IC requires that P z2(v∗) ≥ P z1(v∗), however this condition may fail

because, as it is depicted in Figure 1, it is possible that P z2(v∗) < P z1(v∗). We call P z the

“marginal impact of type on allocation z.”

As illustrated in Figure 1, an assignment rule obtained via pointwise optimization may

fail to satisfy incentive compatibility constraints, even if the virtual utilities of all allocations

are strictly monotonic in a buyer’s type.

Corollary 3 Incentive compatibility may bind at a solution even if the virtual utilities of

all allocations are strictly monotonic in the buyers type.

This Corollary is in contrast to one of the standard lesson from the theory of revenue

maximizing mechanisms. In Figueroa and Skreta (2006) we state sufficient conditions for

pointwise optimization to lead to an incentive compatible allocation rule. In this paper our
3A sufficient condition for this is that F satisfies the monotone hazard rate property, (MHR).
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objective is to illustrate how one can solve for a revenue maximizing auction when such

conditions are violated and show its implications for the shape of the optimal mechanism.

Before providing a specific example where this phenomenon occurs, it may be worth

highlighting the features of the classical environment that guarantee that increasing virtual

valuations imply that pointwise optimization will lead to a feasible solution.

In the standard problem, from each buyer’s perspective there are two allocations: either

he obtains the good or not. In the first case, he gets a payoff of uzi
i (vi) = vi, and in the

latter, a payoff of u
zj

i (vi) = 0. Here zj stands for j getting the good, with j 6= i and j could

also be the seller. The P z′s is this case are:

P zi(vi) = ∂u
zi
i (vi)
∂vi

= 1

P zj (vi) = ∂u
zj
i (vi)
∂vi

= 0 for all j 6= i
.

The fact that there is only one relevant allocation from i′s perspective implies if the virtual

utility of that allocation, namely, Jzi(vi) = vi − 1−Fi(vi)
fi(vi)

, is increasing in vi, then the allo-

cation rule obtained via pointwise optimization will be incentive compatible. This can be

seen immediately from Figure 2.

Now we present a specific example where incentive constraints bind despite monotone

virtual utilities.

Example : Incentive Compatibility may Bind Despite Strictly Increasing

Virtual utilities

Suppose that there is a single buyer whose preference parameter, v, is distributed uni-

formly on the interval [0, 1] and that there are two possible allocations, z1 and z2. For each

preference parameter realization the payoffs arising from these two allocations are given by

uz1(v) = 0.5ev + 0.524

uz2(v) = e0.5v,

which are both convex and increasing in v. The virtual utilities of allocations z1 and z2 are

respectively given by

Jz1(v) = 0.5vev + 0.524

Jz2(v) ≡ e0.5v(0.5 + 0.5v)
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and are strictly increasing in v. They are depicted in Figure 3.

However, in this example despite the fact that the virtual utilities of both allocations

z1 and z2 are strictly increasing in v, pointwise optimization of

max
(p,x)

∫
V

[pz1(v)Jz1(v) + pz2(v)Jz2(v)] f(v)dv

does not lead to a feasible mechanism. As we can see from Figure 3, pointwise optimization

dictates to assign probability one to allocation z1 for v < 0.1054 and to assign probability

one to allocation z2 for v in the interval [0.1054, 0.6346]. However it is not possible to switch

from allocation z1 to allocation z2 because this would imply that P falls at 0.1054, since as

can be seen in Figure 4, P z1(v) > P z2(v) for all v ∈ (0, 1].

In the following section we describe how one can proceed to solve for an optimal mech-

anism in cases where incentive constraints bind, and show that in this case the optimal

mechanism can be random.

3.2 A Simple Case: Bunching with Two Allocations

We will illustrate how one can solve for an optimal mechanism in a very simple scenario.

This has the advantage that it allows us to avoid tedious case-specific details.

Assume that there are only two allocations that the seller can choose from, z1 and z2.

Suppose also for simplicity that the “marginal impact of type” is always higher for z1 than

z2 for all interior v, that is

P z1(v) > P z2(v),

which is equivalent to
∂uz1(v)

∂v
>

∂uz2(v)
∂v

.

Let Jz1 denote the virtual utility of allocation z1 and Jz2 denote the virtual utility of

allocation z2. Furthermore, suppose that there is only one point, call it v∗, where the seller

wishes to switch from allocation z1 to allocation z2. Such a situation is depicted in Figure 1.

In such a scenario, the assignment rule obtained via pointwise optimization would violate

IC at v∗. How will the seller proceed? At a solution the seller should mix between z1

and z2 in a way that minimizes the “cost”of having to choose with positive probability an

allocation that does not have the highest virtual utility, subject to respecting the incentive

compatibility constraints.

The region of “compromise”is an interval of the form [x, x], where that satisfies the

inequalities v ≤ x ≤ v∗ ≤ x ≤ v̂, where v̂ is the first point to the right of v∗ where Jz1 and
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Jz2 cross again.4 The loss of assigning positive weight to allocation z2 for v ∈ [x, v∗) is given

by
∫ v∗

x pz2(v) [Jz1(v)− Jz2(v)] f(v)dv and the loss of assigning positive weight to allocation

z2 for v ∈ [x, v∗) is given by
∫ x̄
v∗ pz1(v) [Jz2(v)− Jz1(v)] f(v)dv. An optimal mechanism must

randomize between z1 and z2 on [x, x], in a way such that the loss is minimized. Moreover

x and x̄ must be chosen optimally.

The problem to be solved is called Program A and it is given by5:

min
pz1 ,x,x

∫ v∗

x
(1− pz1(v)) [Jz1(v)− Jz2(v)] f(v)dv +

∫ x̄

v∗
pz1(v) [Jz2(v)− Jz1(v)] f(v)dv.

subject to:

(i) P (v) ≡ pz1(v)∂uz1 (v)
∂v +(1−pz1(v))∂uz2 (v)

∂v increasing in v for v ∈ [x, x] and

(ii) P (v) ≥ P (x)

(iii) v ≤ x ≤ v∗ ≤ x ≤ v̂

The constraints (i) and (ii) are the incentive compatibility constraints.

Now we will establish that Program A is equivalent to a much simpler problem where

the only choice variable is x. This will be done with the help of a few auxiliary results that

we demonstrate next.

Our first result states that an optimal assignment rule randomizes between allocation

z1 and allocation z2 in such a way, such that P remains constant over [x, x].

Lemma 4 An optimal assignment rule randomizes between allocations z1 and z2 over an

interval [x, x] with v ≤ x ≤ x ≤ v̂ in a way such that

P (v) ≡ pz1(x)
∂uz1(x)

∂v
+ (1− pz1(x))

∂uz2(x)
∂v

≡ P (x). (5)

Proof. We argue by contradiction. First suppose that P were increasing in [v∗, x]. This

cannot be optimal because the seller can assign more weight to allocation z2, up to the

point where P becomes flat. This will increase revenue because in the interval (v∗, x] z2

is preferred to z1. Now if P were increasing in [x, v∗), the seller can increase revenue by

assigning more weight to allocation z1 for v < v∗ up to a point where P becomes flat and

reaches the level of P (v∗). Hence at an optimum P must be flat on [x, x̄].

4Such a point exists, since Jzi(v) = uzi(v), and we have that duz1 (v)
dv

> duz2 (v)
dv

, so Jz1(v) > Jz2(v) unless

uz2(v) > uz1(v). This last situation is not possible since then we would not have the first crossing.
5Since for each v it must be that pz1(v) + pz2(v) = 1, we will express pz2(v) as 1− pz1(v).
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The intuition for this result is simple. Optimality dictates that P is as small as possible

to the right of v∗, where z2 is preferred by the seller, and P is as large as possible to the

left of v∗, where the seller prefers z1. Since P must be increasing these two forces imply

that for the interval where the seller is mixing P must be flat. Put in another way, since

the incentive constraint is binding, optimality dictates that it is satisfied with “equality”,

so P (·) is flat and not strictly increasing.

Our next result establishes that at an optimal allocation rule it must be the case that if

x > v, then the seller at x assigns probability one at z1, whereas if x = v, then she assigns

probability one to allocation z2 at that point.

Lemma 5 If at an optimum x > v < then pz1(x) = 1,. If at an optimum x = v, then

pz1(x) = 0.

Proof. See Appendix.

Now with the help of Lemmata 4 and 5 we can obtain an expression for the optimal

mixing merely as a function of x. In particular if x > v, Lemma 5 implies that pz1(x) = 1

and with the help of (5) we get

pz1(v)
∂uz1(v)

∂v
+ (1− pz1(v))

∂uz2(v)
∂v

=
∂uz1(x)

∂v

which implies that at a solution

pz1(v) =
∂uz1 (x)

∂v − ∂uz2 (v)
∂v

∂uz1 (v)
∂v − ∂uz2 (v)

∂v

, when x > v. (6)

Now (6) allows us also to find x̄; it is either the smallest v where pz1(v) = 0, or if such a v

does not exist, it is equal to v̄, that is

x = min{v̂,min{v ∈ [x, v̂]|pz1(v) = 0}}. (7)

Now, if x = v, Lemma 5 tells us that pz1(v) = 0, which is equivalent to pz2(v) = 1, which

immediately implies that v = x = x̄ and therefore

pz2(v) = 1 for all v ∈ [v, v̄], (8)

and
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From (6)-(8) one can see that Program A can be stated as a problem where the control

variable is simply x, which we denote by Program B:

min
x∈[v,v∗]

∫ v∗

x
(1−pz1(x)(v)) [Jz1(v)− Jz2(v)] f(v)dv+

∫ x̄(x)

v∗
pz1(x)(v) [Jz2(v)− Jz1(v)] f(v)dv,

(9)

where pz1(x) and x̄(x) are given by (6)-(8).

An optimal allocation rule is then of the form,

p∗(v) = (pz1(v), pz2(v)) = (1, 0) for v ∈ [v, x) (10)

p∗(v) =

(
∂uz1 (x)

∂v − ∂uz2 (v)
∂v

∂uz1 (v)
∂v − ∂uz2 (v)

∂v

, 1−
∂uz1 (x)

∂v − ∂uz2 (v)
∂v

∂uz1 (v)
∂v − ∂uz2 (v)

∂v

)
for [x, x]

p∗(v) = (pz1(v), pz2(v)) = (0, 1) for v ∈ (x, v̂],

and where x solves Program B.

If at a solution of Program B we have that x = v, then p∗ is

p∗(v) = (0, 1) for v ∈ [v, v̂].

The payment rule can be obtained from the allocation rule exactly as in Myerson (1981).

We will now solve Program B for our Example.

Optimality of Randomizations:Illustration

For our example6, (9) becomes:∫ 0.1054

x

e
x − ev

e0.5v − ev

[
0.5vev − e0.5v (0.5v + 0.5) + 0.524

]
dv

+
∫ 2x

0.1054

e0.5v − e
x

e0.5v − ev

[
e0.5v (0.5v + 0.5)− 0.5vev − 0.524

]
dv.

This function is depicted in Figure 5.

It has a unique minimizer at

x = 0.074, (11)

which with the help of (6) and (7) implies that7

pz1(v) =
e0.5v − e0.074

e0.5v − ev

x̄ = 0.148.
6Strictly speaking, our example does not fit all the specifications of the simple case we analyzed, because

Jz1 and Jz2 cross twice.
7Calculations and graphs for this example have been done with Matlab. Code available upon request.
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The optimal assignment rule for this example is given by:

p∗(v) = (1, 0) for v ∈ [0, 0.074) (12)

p∗(v) = (
e0.5v − e0.074

e0.5v − ev
, 1− e0.5v − e0.074

e0.5v − ev
) for v ∈ [0.074, 0.148)

p∗(v) = (0, 1) for v ∈ [0.148, 0.6346]

p∗(v) = (1, 0) for v ∈ (0.6346, 1].

With the help of Figure 4, one can easily see that p∗ in (12 ) is incentive compatible. Figure

6 depicts the probability of z1 that p∗ assigns around the region of randomization.

In this example the optimal assignment rule involves randomizations. This in contrast

to the classical case, where, (excluding cases where the seller is indifferent), an optimal

allocation rule never involves randomizations.

4. Concluding Remarks

We illustrated how one can solve for an optimal mechanism in a very simple scenario and

noted this has the advantage that it allows us to avoid tedious case-specific details. In

general, when there are more allocations, and/or when virtual utilities cross more than

once, and/or when P z′s are not always ranked in the same way, the details of the solution

will depend on the particular specifics of the problem at hand. However, the main idea of

how to proceed is the one we illustrated. Whenever there is a point where IC is violated by

the assignment rule obtained via pointwise optimization, a solution will involve an interval

of randomization between more than one allocations. Of course, it is possible that in some

cases this interval will be degenerate. Finally, it is worth mentioning that our technique can

be also useful in cases where the designer is interested in designing efficient mechanisms,

and where the allocation rule that maximizes social welfare is not incentive compatible. In

these cases our method can be used to find the allocation that gets as close as possible to

maximizing social welfare, subject to the incentive constraints.
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5. Appendix

Proof of Lemma 5

Recall from (5) that all v ∈ [x, x] we have that

pz1(v)
∂uz1(v)

∂v
+ (1− pz1(v))

∂uz2(v)
∂v

=
[
pz1(v)

∂uz1(v)
∂v

+ (1− pz1(v))
∂uz2(v)

∂v

]∣∣∣∣
x

. (13)

Now from (13) we can obtain that

pz1(v) =
pz1(x) ∂uz1 (v)

∂v

∣∣∣
x

+ (1− pz1(x)) ∂uz2 (v)
∂v

∣∣∣
x
− ∂uz2 (v)

∂v

∂uz1 (v)
∂v − ∂uz2 (v)

∂v

so the objective function can be written as

R(x, pz1(x)) =

v∗∫
x

−pz1(x) ∂uz1 (v)
∂v

∣∣∣
x
− (1− pz1(x)) ∂uz2 (v)

∂v

∣∣∣
x
− ∂uz2 (v)

∂v

∂uz1 (v)
∂v − ∂uz2 (v)

∂v

[Jz1(v)− Jz2(v)] f(v)dv

+

x(x,pz1 (x))∫
v∗

pz1(x) ∂uz1 (v)
∂v

∣∣∣
x

+ (1− pz1(x)) ∂uz2 (v)
∂v

∣∣∣
x
− ∂uz2 (v)

∂v

∂uz1 (v)
∂v − ∂uz2 (v)

∂v

[Jz2(v)− Jz1(v)] f(v)dv

It is easy to see that, because of feasibility, if x > v, then pz1(x) = 1. We can divide

then in two regions:

R(x, pz1(x)) =

{
R(x, 1) if x > v

R(v, pz1(v)) if x = v

To find the minimum of R, we look separately in each region. First, we constraint

ourselves to look for in the region for which pz1(x) = 1. Differentiating R with respect to x

we get

dR(x)
dx

= −

[
∂uz1 (v)

∂v − pz1(v)∂uz1 (v)
∂v − (1− pz1(v))∂u(v)

∂v
∂uz1 (v)

∂v − ∂uz2 (v)
∂v

]∣∣∣∣∣
x

[Jz1(x)− Jz2(x)] f(x)

+

pz1(x) ∂uz1 (v)
∂v

∣∣∣
x

+ (1− pz1(x)) ∂uz2 (v)
∂v

∣∣∣
x
− ∂uz2

∂v

∂uz1 (v)
∂v − ∂uz2 (v)

∂v


∣∣∣∣∣∣∣
x(x)

[Jz2(x(x))− Jz1(x(x))]
dx(x)

dx
f(x(x))

+

x(x)∫
x

pz1(x) ∂2uz1 (v)
∂v2

∣∣∣
x

+ (1− pz1(x)) ∂2uz2 (v)
∂v2

∣∣∣
x

∂uz1 (v)
∂v − ∂uz2 (v)

∂v

[Jz2(v)− Jz1(v)] f(v)dv
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Notice also that the second term vanishes since, for a given x either x(x) = v̂ and

therefore dx(x)
dx = 0, or

pz1(x(x)) ≡

pz1(x) ∂uz1 (v)
∂v

∣∣∣
x

+ (1− pz1(x)) ∂uz2 (v)
∂v

∣∣∣
x
− ∂uz2

∂v

∂uz1 (v)
∂v − ∂uz2 (v)

∂v


∣∣∣∣∣∣∣
x(x)

[Jz2(x(x))− Jz1(x(x))]
dx(x)

dx
f(x(x)) = 0

We can then write:

dR(x)
dx

=
d2uz1(v)

dv2

∣∣∣∣
x

x(x)∫
x

Jz2(v)− Jz1(v)
duz1 (v)

dv − duz2 (v)
dv

f(v)dv

It’s easy to see that the sign of dR(x)
dx depends only on the sign of

x(x)∫
x

Jz2 (v)−Jz1 (v)
∂uz1 (v)

∂v
− ∂uz2 (v)

∂v

f(v)dv,

since d2uz1 (v)
dv2

∣∣∣
x

is positive by convexity.

Moreover,
x(x)∫
x

Jz2 (v)−Jz1 (v)
∂uz1 (v)

∂v
− ∂uz2 (v)

∂v

f(v)dv is nondecreasing in x: the integrand is negative

when v < v∗ and positive otherwise, and x(x) is nondecreasing in x.

This observation, plus the fact that
[

∂uz1 (v)
∂v − ∂uz2 (v)

∂v

]∣∣∣
x=v∗

> 0 and
x(v)∫
v∗

Jz2 (v)−Jz1 (v)
∂uz1 (v)

∂v
− ∂uz2 (v)

∂v

f(v)dv >

0 implies that dR(x)
dx is either always positive, or that it crosses 0 at some point. This gives

us:

x =


v if

x(v)∫
v

Jz2 (v)−Jz1 (v)
∂uz1 (v)

∂v
− ∂uz2 (v)

∂v

f(v)dv ≥ 0[
dR(x)

dx

]−1
(0) if not

(14)

This equations gives us the optimal starting point when we are constrained to an optimal

starting mixture of pz1(x) = 1. We have to analyze now the case when pz1(x) 6= 1. We have

already established that this can only happen when x = v. Doing similar manipulations we

get

dR(pz1(v))
dpz1(v)

=
[
∂uz1(v)

∂v
− ∂uz2(v)

∂v

]∣∣∣∣
x

x(x)∫
x

Jz2(v)− Jz1(v)
∂uz1 (v)

∂v − ∂uz2 (v)
∂v

f(v)dv

From which we conclude, using analogous arguments, that

13



pz1(v) =

 0 if
x(v)∫
v

Jz2 (v)−Jz1 (v)
∂uz1 (v)

∂v
− ∂uz2 (v)

∂v

f(v)dv ≥ 0

1 if not

(15)

Therefore, by (14) and (15) everything depends on the sign of
x(v)∫
v

Jz2 (v)−Jz1 (v)
∂uz1 (v)

∂v
− ∂uz2 (v)

∂v

f(v)dv.

If positive then x = v dominates any other starting point, and moreover pz1(v) = 0. If

negative, then the optimal x is interior, and we know that pz1(v) = 1.
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