In this article, we forecast crude oil and natural gas spot prices at a daily frequency based on two classification techniques: artificial neural networks (ANN) and support vector machines (SVM). As a benchmark, we utilize an autoregressive integrated moving average (ARIMA) specification. We evaluate out-of-sample forecast based on encompassing tests and mean-squared prediction error (MSPE). We find that at short-time horizons (e.g., 2-4 days), ARIMA tends to outperform both ANN and SVM. However, at longer-time horizons (e.g., 10-20 days), we find that in general ARIMA is encompassed by these two methods, and linear combinations of ANN and SVM forecasts are more accurate than the corresponding individual forecasts. Based on MSPE calculations, we reach similar conclusions: the two classification methods under consideration outperform ARIMA at longer time horizons.
JEL classification: C22, E32
Keywords: autoregressive integrated moving average; artificial neural networks; support vector machines.